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Abstract

As ML/AI usage expands to a variety of high-stakes decisioning, there is an in-

creasing need to provide transparent explanations. In credit decisioning, regulation

has long stipulated the provision of “Adverse Action Codes” (AACs) explaining denial

of credit. However, there is potentially a wide range of acceptable AAC methodologies

that could be used. This paper compares AACs derived from four common methods -

an axiomatically-backed Shapley-based approach, a Most Points Lost-based approach,

a difference from Mean approach, and a Univariate binning approach - based on two

XGBoost risk models predicting credit card and mortgage risk respectively. We find

that, overall, the Univariate approach deviates the most from the Shapley-based ap-

proach, all derived differences are ‘significant’ within our novel placebo testing frame-

work, differences are more pronounced for lower-risk customers on the border of the

reject boundary, and the Most Points Lost and Mean approach are less robust to data

perturbations than Shapley.
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1 Introduction

Given the potential gains in accuracy of machine learning (ML) models in credit under-

writing over traditional models, many lenders are increasingly relying on them for credit

decisions. However, given the complex nature of many such models, often their decisioning

logic is not readily explainable. This poses potential challenges not only in managing model

risks for developers/validators, but also due to regulatory requirements that lenders pro-

vide borrowers the reasons for denials, should they occur - ‘Adverse Action Codes’ (AAC)1.

These are stipulated under both the Equal Credit Opportunity Act (ECOA) implemented

by Regulation B, as well as the Fair Credit Reporting Act (FCRA).

The ECOA states

Equal Credit Opportunity Act (ECOA) - 12 CFR 1002.9(a)(2)

The creditor must ... provide the applicant with the specific principal reason for the

action taken...

Furthermore, Paragraph 9(b)(2) specifies that such provided reasons should “relate to and

accurately describe the factors actually considered or scored” by the creditor. While in a

slightly different context the FCRA stipulates:

Fair Credit Reporting Act (FCRA) - 15 U.S. Code §1681g

A consumer reporting agency shall supply to the consumer ... a notice which shall in-

clude ... all of the key factors that adversely affected the credit score of the consumer

in the model used, the total number of which shall not exceed 4 ...The term ‘key fac-

tors’ means all relevant elements or reasons adversely affecting the credit score for the

particular individual, listed in the order of their importance based on their effect on the

1This includes both assigning credit at time of booking, but also, in the case of revolving credit, for
adjusting credit lines in response to borrower request, such as in reactive credit line increases for credit
cards.
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credit score.

However, the regulation is not prescriptive, and there are a wide range of methods that

may be used to identify reasons for adverse actions. Indeed, paragraph 9(b)(2) makes clear

that “The regulation does not require that any one method be used for selecting reasons

for a credit denial or other adverse action that is based on a credit scoring system. Various

methods may meet the requirements of the regulation. ” This implies different lenders

will likely utilize different methodologies to generate AACs for their ML models used in

underwriting. Indeed, early adopters and vendors of ML/AI methods put forth or utilized

several intuitively simple methods including (i) a “most points lost” (MPL) approach, (ii)

a univariate binned predicted risk approach (Univariate), and (iii) a difference from means

approach. These methods are simple and easy to compute, and can convey some essential,

simplified information on denials. However, they may conceivably fall short if a model

exhibits higher complexity, such as the presence of interactions or non-linearities.

In the face of these considerations, some lenders have started adopting alternative method-

ologies from the ML interpretability toolbox to generate AACs, most notably several im-

plementations of Shapley values, an approach adapted from cooperative game theory. The

motivation of Shapley is that the effect of a covariate xi on model output may differ depend-

ing on the values of the {x−i} other covariates if the variables interact. Shapley addresses

this problem by taking the average of the effect of perturbations of xi on the output over

all relevant perturbations of the {x−i} other covariates, thus incorporating information on

these interactions. In addition, it is the only one that satisfies several desirable axiomatic

properties, see Strumbelj and Kononenko (2014). Due to the need to take the average of

many combinations of variable perturbations, Shapley can be computationally intensive,

and there have been several implementations that simplify it at the cost of accuracy, such

as TreeSHAP. In addition, there is a crucial choice of baseline/reference group that needs to

be made, a topic we will only briefly touch on in this paper but address with more detail in
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Krivorotov and Richey (forthcoming).

Unlike studies such as Strumbelj and Kononenko (2014) and Sundararajan et al. (2017) that

take an axiomatic approach when justifying an interpretability method, the non-prescriptive

nature of the regulatory requirement necessitates a more empirical approach in understand

the differences between the methods. We do not make a stand on what the “correct” method

would be, but simply compare their differences in key dimensions of interest. The “labora-

tory” where we will conduct our analysis will be 2 separate underwriting/account manage-

ment style machine learning models estimated on data across two prominent credit portfolios:

credit cards and mortgages. In this sense we are mimicking the setting where a lender has,

for example, an account management cards model and is declining or approving requested

line assignment increases thus necessitating the derivation of AACs. We set a reasonable

reject bound for each model and calculate AACs for the entirety of the customers in our out-

of-time reject sample across the 3 “legacy” methodologies - MPL, Univariate, and Difference

from Mean, and one new methodology - Shapley. In this way, this paper is necessarily a set

of case studies. However, we believe the results are generalizable qualitatively.

We perform four main analyses. First we simply document the differences in derived AACs

between approaches. Given the theoretical justification for a Shapley approach, we set this

as ground truth and then estimate several distance measures between derived AACs for

individuals; we stress here that, though for the sake of our analysis we set it as a ‘ground

truth,’ we base that off of its desirable axiomatic properties2 and not the degree to which it is

‘correct’ in its relation to the requirements of the above cited regulation (see Section 2.5 where

we discuss in more detail the conceptual goals of each method). Second, in order to give some

meaning to these measured distances based on an objective measure of ‘difference,’ we take an

approach that loosely follows the placebo testing done in the synthetic control literature (e.g.

2Specifically, efficiency, symmetry, dummy, and additivity (see Strumbelj and Kononenko (2010) for
discussion)s. However, these axiomatic properties are not specified in ECOA and so we cannot say that
having them would mean they are correct. ECOAs definition is broad enough so that multiple methods like
Univariate, MPL, and Shapley can all be classified as correct.
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Abadie et al. (2010) and Abadie et al. (2015)). This places between-AACs-methodologies

distances within the distribution of between-model distances where this latter distribution

is based on a simulation of multiple models with different seeds leading to between-model

variations derived solely from the inherent randomness in the XGBoost algorithm. Third, we

document the relationship between derived AAC distances and predicted risk. And lastly,

we document AAC sensitivity to small perturbations in in a rejected applicant’s data.

Our findings can be summarized as follows. First, the various AAC methods lead to clearly

different AACs based on our chosen difference measures with MPL and the Mean approach

being similar in their results and the Univariate approach leading to more pronounced dif-

ferences. Second, based on our placebo testing approach, these differences are ‘significant’ as

based on our derived pseudo p-value. Third, these seen differences are more pronounced for

those with lower risk levels and closer to the accept boundary and thus more likely affected

by AACs across all measures and methods. And lastly, we see differences in the deteri-

oration of AACs with data perturbations with the Univariate approach being immune by

its construction, the Shapley approach being least affected of the remaining and the MPL

and Mean approaches deteriorating the fastest in somewhat similar fashion. These general

results are robust across both credit portfolio models.

Our findings are closely related to recent research coming out of FinRegLab FinRegLab

(2022). They investigate several methods for AACs (several Shapley approaches and several

LIME approaches) and then analyze ‘fidelity’ and ‘consistency’. Much of our analysis paral-

lels, in part, their work on consistency which measures to what degree different approaches

agree on derived AACs. Notabal differences are, however, that we compare a single Shapley

approach to other approaches we have seen at lenders in the industry - MPL, Univarite,

Difference from Mean - rather than several approaches of Shapley and LIME and we then go

on to frame these differences in our placebo testing setting as well as document how these

differences relate to predicted risk. Additionally, part of their fidelity analyis is centered
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on a perturbation excercise which essentially mimics a MPL approach. So in a sense our

Shapley-MPL comparison is related to their SHAP perturbation testing, though given the

different aims the results are not directly comparable. Their main takeaway is that Shapley

performs better in terms of fidelity than LIME and that there are considerable differences

(inconsistency) even between different Shapley implementations; our main results find simi-

lar inconsistencies between a different set approaches and note the superior performance of

Shapley in terms of stability rather than fidelity.

The rest of the paper proceeds as follows. Section 2 introduces the concept of AACs and dis-

cusses the derivation of the various AACs we utilize as well as conceptual differences between

their goals. Section 3 discusses in greater details our analytical approach to investigating

differences in AAC results. Section 4 discusses results and Section 5 concludes. Details of

the two models employed and the data underlying them can be found in the appendix.
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2 Deriving AACs

AACs, in this paper, are understood to be the model attributes determined to have the largest

‘contributions’. What we mean by ‘contributions’ will vary according to AAC approach. To

be clear, what we seek is some function φ that takes a model f : RK → [0, 1] and an input

vector x ∈ RK and yields a vector of ‘contributions’: φ(f, x) = (φ1, ...φK) ∈ RK . We then

understand the subset of largest φ to be AACs (though at times in the paper we will refer

to the entire set of φ as the AACs).

For standard underwriting models based on logistic regressions, we can outline a natural

approach for deriving φ. Such a model would estimate the log odds of default (i.e. the

‘score’) as a linear combination of attributes:

ln(
Pr(y)

1− Pr(Y )
) = β0 +X1β1 + ...+XKβK

From here, importantly, since the model is linear, the effect of Xk is constant on the score

for everyone and also throughout the domain of Xk. A natural approach in deriving contri-

butions would be to set φj to βj(Xj − X̄j) given appropriately chosen baseline X̄j.

However, this simple approach can become infeasible in many ML models; particularly be-

cause most do not have an interpretable, closed-form expression. To that end, multiple

solutions have been suggested to address this issue in practice. We will focus on four ap-

proaches that have been proposed as possible approaches or have been implemented at

various financial institutions.

One approach, and one that is seen by many as the ‘right’ approach in some sense, is

based on the concept of Shapley values and comes from work on game theory. In addition,

Strumbelj and Kononenko (2014) and Sundararajan et al. (2017) show that it is the method
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that satisfies several desirable axiomatic qualities, such as efficiency, additivity, and thus

providing a theoretical justification for its usage, although as mentioned previously AAC

guidance is nonprescriptive enough that methods do not necessarily need to follow these

aixomatic properties. Another approach is to use a ‘most points lost’ approach where the

‘contribution’ is the difference in score between ones actual and the counterfactual if that

variable were set at an individuals ‘optimal’ level.3 A third approach is similar to an MPL

approach, but instead considers the counterfactual if the variable is set to the average, and

thus is a sort of measure of deviation from the average. Lastly, we will consider an approach

that is based on univariate risk measure based on average predicted scores. Another, rather

well-known approach known as LIME, will not be explored as we found it to be sensitive

to too many seemingly subjective choices to make it unlikely to be used in a production

environment;4 furthermore we have not seen this used at any financial institutions.

2.1 Shapley Values

Shapley values are a decomposition of model score that assign points to each attribute such

that they add up to the full model score. The concept is derived from game theory with the

goal being to assign players’ contributions to a game’s score, explicitly taking account that

one person’s contribution depends on every other person’s contribution.

The concept is simple. Assume there are three players (A,B,C). What is the contribution of

player A? One answer is how the payoff changed when A entered the game: thus φ̃1(f, A) =

f(A,B,C) − f(B,C). But an equally correct answer is the change in the payoff after A

entered when only B is present: φ̃2(f, A) = f(A,B)− f(B), or after when only C is present:

φ̃3(f, A) = f(A,C)− f(C) or lastly the payoff with just A and no other player: φ̃4(f, A) =

3Note that in ML models, as opposed to logistic models, each individual would have their own optimal
value.

4Even firms that do rely on some form of LIME to produce reason codes caution that their application
should be done only after appropriate sensitivity checks and may not be valid for wide data (e.g. see Hall
et. al. from the H20).
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f(A). The solution proposed is to take the average all of these possibilities, thus the Shapley

value is: φ(f, A) = 1
4

∑
i φ̃i(f, A).

This solution has several compelling properties related to the assigned contributions being

‘fair’ in some sense and is thus the basis for this approach being seen by many as the ‘correct’

answer to the question at hand (see Shapley (1953) for discussion and derivation or Strumbelj

and Kononenko (2014) for more recent ML related discussion).

There is however a key issue to directly using this solution for the derivation of AACs for

many ML models and that is “omitting” a certain variable from a function is not well-defined

- we generally need values for all the attributes of the model to obtain a score. To discuss a

practical approach to handling this issue we will introduce some notation.

Let K = {1, 2, ..., K} be a set ofK features, letA be the feature space and x = (xi, x2, ...xK) ∈

A be an instance in the feature space. Furthermore let f be a classifier of interest and c

the class of interest and so fc(x) the classifiers‘ prediction regarding class c. We begin by

defining the partial prediction. This partial prediction Pfc(S) is the expected prediction if

we only knew the values of a subset of the features S ⊂ K.

Pfc(S) =
1

|AK\S|
∑

y∈AK\S

fc(τ(x, y, S)) (1)

where τ(x, y, S) = (z1, z2, ..., zK) such that zk = xk if k ∈ S else zk = yk.

What this represents is the average of all the predictions where the known attributes (x) are

set to their value and all other attributes (y) are assigned to every possible combination of

those attributes. So, for example, if n = 6 and we did not know x5 and x6 and they both took

the value {0, 1} then we would average over the four possible predictions where for each we

set (x1, ..., x4) to their known values and for the unknowns we had the possible combinations:

(0, 0); (0, 1); (1, 0); (1, 1). Of course with continuous attributes, or even those with multiple
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values, this quickly becomes problematic in practice, a point we return to below regarding

approximations.

Importantly, note how this partial prediction is done: it is an average of every possible mix

of realizations of unknown attributes. In this sense it is ‘data agnostic’ and only relies on

the model itself and does not leverage the development data (other than the domains for

xk); however, this differs from another practical alternative introduced in the next section.

To complete the Strumbelj and Kononenko (2014) formulation of Shapley, we will now let

π(K) be the set of all ordered permutations of K and Prek(O) be the set of attributes that

proceed attribute k in the order O ∈ π(K). Now, we can write the Shapley value of attribute

k as:

φk =
1

K!

∑
O∈π(K)

(Pfc(Pre
k(O)

⋃
{k})− Pfc(Prek(O))) (2)

This is the difference in the partial prediction with and without attribute k averaged over

every possible order that k might enter into the prediction. Recall from the definition of

Pfc(·) that the partial prediction would compute the average prediction over all possible

values of the omitted variables. However, it is unclear how to implement this in the case

of continuous variables and even for categorical variables may be computationally difficult.

In addition, one might want to weight certain classes or data ranges more or less when

computing this average to have a more empirically reasonable baseline.

2.1.1 Sample Approximations

To circumvent this issue, Strumbelj and Kononenko (2014) suggest an approximation,which

is the one employed in our application. To do this, first note we can adjust the partial

prediction by double counting some instances and correcting the term with the proper average
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adjustment; while this seems an added complication it simplifies the sampling strategy. More

precisely, adjust the partial prediction to be:

Pfc(S) =
1

|A|
∑
y∈A

f(τ(x, y, S)) (3)

What this does, compared to equation (2) is create many duplicates of each variation of

the y ∈ AK\S, but this number of duplicates is equal for each y ∈ AK\S, so the average

does not change. This implies another form for the Shapley value that lends to a sampling

approximation:

φk =
1

K!|A|
∑

O∈π(K)

∑
y∈A

(f(τ(x, y, Prek(O)
⋃
{k}))− f(τ(x, y, Prek(O)))) (4)

From this we see that the Shapley value is an average where the sampling population is

π(K) × A, and in practice this may be infinite or, when not, still impractical to attempt

to implement with any large model. However, since the value is equivalent to a population

average, then it can be approximated with sample averages which will follow the central

limit theorem. Thus an unbiased estimator of φk can be achieved by:

1. Select a random permutation O ∈ π(K)

2. Select a random mix of attributes y ∈ A

3. Compute v1 = Pf(τ(x, y, Prek(O)
⋃
{k}))

4. Compute v2 = Pf(τ(x, y, Prek(O)))

5. Compute φ̃k = vi − v2

6. Average values for Step 5 over a large number (m) of iterations of 1-5
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Of course the size of m is potentailly an issue. The estimator φ̃k is governed by the central

limit theorem and is approximately normal with mean φk and variance
σ2
k

m
where σ2

k is the

population variance of the attribute’s contribution. Given that contribution is bounded

between -1 and 1 (since we are dealing with a classifier), the upper bound for this variance

is 1. This leads to a simple power analysis to determine the appropriate m to reach a given

errror and confidence level. For any confidence level (1 − α) and error ε we will wish the

following to hold: P (|φk − φ̃k| < ε) = 1 − α. And, assuming the approximate normality of

the sampling distribution, we can derive the appropriate sample size: mi(1−α, ε) =
Z2
1−α·σ2

k

ε2
.

Thus, for example, assuming the limit of 1 for σ, a 99% confidence, and an error of 0.01 we

arrive at approximately 65,000 samples. In practice this will likely be much smaller and σ2

could be estimated during the the sampling to determine an earlier stopping point.

2.1.2 Training Shapley

A final conceptual question to make the link from the game theoretic Shapley to a Shapley

value that can be used for setting AACs is the choice of sampling distribution, in effect a

baseline, which turns out to change the conceptual interpretation of the values and indeed

give significantly different results. It is important to note that Shapleys with different base-

lines would still satisfy the same axioms, but the interpretation would be different, impacting

the evaluation of derived AACs.

Let’s say the model is trained on a wide range of customers, some of which may be in the

regions of the feature space which would subsequently cause them to be rejected due to

credit policy. If the Shapley sampling distribution is based on the empirical distribution of

the training data, then calculating Shapley values for rejected customers would entail calcu-

lating marginal contributions relative to the entire set, including those customers that would

subsequently have been rejected. This may muddle the interpretation of the reject reason

since rejected customers may rather understand the main factors driving their difference
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from the customers that would be accepted rather than from the full population. On the

other hand, given how risk scores are used in practice within larger risk strategies that may

continually change score cut-offs, Shapley values based on such subsets of the data could

change overtime even if customers’ data and scores remain constant.

Based on these considerations, as well as the observed approaches taken by lenders utilizing

Shapley values for AACs, we will derive AACs from Shapley based on training them with

respect to a baseline that consists of the full developmental population. However, it is worth

noting that this would not be the only possible logical decision for a baseline. Other potential

meaningful baselines would include 1) only the accepted customers from the underlying data,

2) only the accepted customers closest to the customer in question or 3) a point or area

in the feature space closest to the customer in question.5 For a more detailed study of

the consequences of various baseline choices for Shapley explanations, see Krivorotov and

Richey(forthcoming).

2.2 Most Points Lost

While Shapley provides a sophisticated method to explain models with interactions and

nonlinearities, other, simpler techniques that were used commonly in the linear regression

world are easier to compute and could conceivably provide similar explanations in some

cases.

The first such approach we consider is known as “most points lost,” (MPL). In this approach,

we evaluate which single characteristic of a customer can be modified to create the maximal

decrease in score (reflecting probability of default in this context), without changing any

other attribute. In the simple logistic regression approach this would be, for each customer

5For either example, “closest” would depend on the feature space metric chosen and could vary signifi-
cantly depending on objective for the explanation.
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x ∈ X, i ∈ A,

φi = βi(xi − xi)

where xi is the minimal value in the domain if βk > 0 and maximal value in the domain if

βk < 0.

This is simple to extend in the ML context by introducing the concept of an Individual

Conditional Expectation (ICE) plot. These are used commonly to demonstrate how a pre-

diction can change (potentially nonlinearly and nonmonotonically) after perturbing a single

variable, keeping all other variables in the observation constant. 6

To calculate the MPL with an ICE plot, one first finds the value xi such that it minimizes

the ICE curve for that particular observation. A key difference from the linear setting is

that in an ML context, this may be unique for each observation due to interactions and

non-monotonicities. We then derive φi by taking the difference between this minimal value

and the observation itself. Thus

φi = f(X−i, xi)− f(X)

In our analysis we will, for each individual search the domain of xi with a quantile search

using 100 grid points.

2.3 Divergence from Mean

A somewhat similar approach to MPL, though computationally easier, is to consider how

a person’s score would change had they had the average attribute value of the population;

this is conceptually easy to grasp for many and may be deemed a natural approach. Thus

6It is also worth noting that this breaks cross-correlations in the data and can enter regions in the feature
space that are not well represented in the data, which can either be a flaw or a benefit depending on the
objective of the analysis.

14

Electronic copy available at: https://ssrn.com/abstract=4133915



for the ‘Mean’ approach, φi = f(X−i, x̄i) − f(X) where x̄i is the average from the model’s

development data.

2.4 Univariate Risk

The last approach we will explore divides each variable into decile bins and computes a mean

model prediction for each bin. The φi for each customer and variable would be assigned based

on the bin that each customer’s level of variable i falls in. Importantly, observations in each

bin for variable xi are not fixed in any way for any other variable xk and vary within bin

according to the natural joint distribution of those (x−i) to xi.

We can relate this methodology to Shapley and define it as a partial prediction (rather than

a difference of partial predictions):

φk = P̃ fc(xk) =
1

|f(KN\xk |xk)|
∑

y∈f(AK\xk |xk)

fc(xk, y) (5)

Note that this approach only considers one (conditional) partial prediction, that of introduc-

ing the attribute of interest first and then taking the conditional expectation of the classifier

given that attribute as in Shapley, but only considering that one partial prediction. Thus it

ignores all the other attribute values when assigning ‘points’ to the attribute of interest, in

conflict with the idea behind the Shapley approach.

This methodology is a relatively common and computationally simple way to create AACs.

While this provides an understanding of how risky on average a customer with variable i is

projected to be, it has the risk that it may ascribe high levels of importance to variables

xi that are correlated to important variables xk but are not by themselves important. Say

for example a credit risk model is trained on history of delinquencies but not FICO. This
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method still ascribe high levels of importance to FICO even if it is not an input in the model

since it is generally highly correlated to history of delinquencies.

2.5 Conceptual Comparison of AAC Approaches

Before moving on to analyze how different AAC methods are in the top attributes they select

in application, we want to briefly discuss the different conceptual questions each method is

answering. Since they are answering different questions, we can expect them to arrive at

different answers, and we want to address these issues before moving on to measure how

different they in fact are.

Shapley, as discussed above, is attempting, within a game-theoretic framework, to answer the

question: “How much did each attribute contribute to the eventual score taking into account

interactions from other attributes?” The MPL approach is asking a ‘what if question’;

specifically: “For each attribute, how much would your score change if we altered that

attribute to the most beneficial level?” The Mean approach also asks a ‘what if question’;

specifically: “For each attribute, how much would your score change if we altered that

attribute to the unconditional average level?” The univariate approach asks: “For each

attribute, if the only information I knew about you was your level of that particular attribute,

what risk level would my model predict you to have?”

The fact that the four approaches ask four fundamentally different questions notwithstand-

ing, we still wish to answer, in practice, how much does this matter. This is the main

contribution of the paper and our methodology is discussed in the next section.
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3 Comparison Analyses

3.1 Measures for Comparing AACs

After running each of the four AAC methodologies on the full OOT reject sample, we base

our analysis on four different measures of the cross-method differences in derived AACs

(again noting we compare MPL, Mean, and Univariate to Shapley):

1. Kendall Tau distance on the full set of AAC rankings

2. Euclidean Distance on the full set of AAC rankings

3. A simple cardinal measure of how many of the top 4 AACs correspond between methods

4. a Euclidean distance between the rankings of the top 4 AACs for Shapley and the

corresponding rankings for the other methods

In AACs, the information being provided to the customer is primarily ordinal in nature and

so we focus on differences in rankings instead of magnitudes of attributions. To that end,

the first metric, Kendall Tau, is focused on rank-ordering, providing a measure of pairwise

agreement between the lists. The Euclidean distance on the other hand would provide

more color on the difference in magnitude between some variable rankings - for example,

if a variable went from the bottom to the top of the ranking or vice versa between the

methodologies this would be highly weighted here.

The focus of the last two measures on top four attributes is due to two main concerns. The

first is that the least important AACs are likely small in magnitude and highly likely to jump

in order, so differences in those may cloud out differences in more meaningful/important

AACs. Second, it is common practice in the industry to provide four AACs, thus this focus

also has real world implications.
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3.2 Placebo Testing

While the analysis above provides direct measures of differences between AACs derived

by various methodologies, they do not give any measure as to whether these differences

are meaningful in any way; for example does a Kendall Tau of 0.8 indicate meaningful

differences in any objective way? To address this issue we loosely follow the placebo testing

approach often done in the synthetic control literature. This approach compares a change

in an outcome of interest for a unit which received a treatment to a distribution of outcome

changes from units that did not receive the treatment; the idea being that some change in

outcome is bound to be present simply due to underlying randomness in the data generating

process and thus ‘meaningful difference’ should be in comparison to that distribution.

Our parallel to this approach uses a baseline measure of ‘difference’ as the one embedded

inherently within the XGBoost model due to the random column and row sampling used in

the algorithm. If we were to repeatedly fit our XGBoost model with the same hyperparam-

eters, but a different seed, then recalculate our Shapley AACs, this would output different

results. We then use the in-between-model differences in our four measures (Tau, Euclidean,

Top 4, Top 4 Euclidean) as a quasi-objective measure of difference, and compare each indi-

vidual’s between-AAC-method distance measure to their unique in-between-model distance

distribution.

Thus our approach is as follows. Optimally fit an XGBoost model (details in appendix)

on our full development data set. Then, refit 50 XGBoost models using the same hyper-

parameters but different seeds (thus allowing randomness inherent in the XGBoost model

to differ from the original model). Then, for each observation in an out-of-time (OOT)

sample, extract Shapley values for each of the 50 models and create a distribution of 1,225

cross-model measurements of ‘difference’ between the Shapley values for all four measures

discussed above.7 We then use these observation-specific distributions as our comparison

750 ∗ (50− 1)/2 = 1, 225
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when we investigate differences in AACs between the various approaches within our main

model. We then compare our between-AAC-methodology distances to that observation’s

ECDF.

3.3 Distance vs. Risk

Next we investigate if there is a relationship between our derived distances in our first analysis

and predicted risk. There is reason to believe it is likely that very risky individuals have clear

red flags that lead to more or less the same reasons for such predictions, and thus different

AAC methodologies may be more likely to agree as to the factors contributing to this risk.

Conversely, those just on the threshold of being rejected may have more nuanced reasons for

being rejected and thus the different methodologies may be less likely to agree as to main

drivers of risk, in an “Anna Karenina”-like principle for credit worthiness.

If this principle holds, it is especially important to keep in mind as these are precisely the

individuals most likely to have actionable insights on their AACs due to their proximity

to being approved for credit. We perform these analysis with simple bivariate regressions

(standard mean as well as quantile).

3.4 Sensitivity Analysis

Lastly we investigate the different AAC methodologies for their sensitivity to perturbations

in the underlying data. Given that many credit risk drivers and measures that can change by

small amounts over time, such as average balances, credit ratios or number of accounts, and

that ML models may have many non-linearities and non-monotonicities in the relationships

between attributes and predicted risk, we wish to see how much of this information is passed

to the derived AACs.
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We do this with a simulation exercise. First, we take each account from our OOT rejected

pool and perturb each variable by 5% of the development datum’s standard deviation in a

random direction. Next, we loop through each variable and set it back to its real value and

calculate that variable’s φ for each account. Hence, each perturbed AAC has the variable of

interest xi kept at the same value as the original, only the other variables x−i vary. Each of

these derived φi,pert constitute the AACs. We then calculate the same distance measures as in

the baseline analysis, however instead of calculating them across methodology, we calculate

them within methodology, but between perturbed and non-perturbed. We then replicate

this exercise in 5% intervals to a maximum of 50% of the SD of the data.8 Then, for each

AAC methodology we plot the mean distance of the perturbed AAC to its original one to

see how the method deviates with such data changes.

8For the mortgage model which has several categorical variables we must take a slightly different approach
from perturbing the data X% of the SD; rather we move X% of accounts to the next most likely category.
While this is not exactly the same approach of course, we believe it a conceptually parallel move.
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4 Results

4.1 Raw Differences

Tables 1 and 2 provide raw differences between Shapley and the other AAC methods for

our four chosen measures for our Credit Card Model and Mortgage Model respectively; the

tables provide means and standard deviations as well as select quantiles for our OOT rejected

sample. For the credit card model, we can see that the MPL and Mean AAC approach lead

to similar distributions of our difference measures with the Univariate approach diverging

much more on all levels. Thus while MPL and the Mean approach lead to an average Kendall

Tau of just under 0.5 and an average top 4-in-4 of slightly over 2, the Univariate approach

leads to an average Tau of just under 0.25 with the 90th quantile only reaching 0.36 and an

average 4-in-4 of under 1.5. Similarly for the Mortgage model, though not as drastic, the

Univariate approach differs most from Shapley with an average 4-in-4 of 2.24 compared to

2.72 or 3.09 for the MPL or Mean approach; related, the 90th quantile for MPL and Mean

are both 4 with Univariate only reaches 3 and the Euclidian distance for the Top 4 is 12 for

the Univariate vs. around 5 for both Mean and MPL.

Of course, a keen observer will quickly be led to the question of whether these difference

measures are meaningful in any sense. In standard statistical inquiries this is answered with

statistical tests and resulting p-values. To parallel this we now proceed to our placebo testing

approach.
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Table 1: Raw Difference Between Shapley and Other AACs Methods (Credit Card Model)

Mean SD 10th Q 25th Q 50th Q 75th Q 90th Q
Shap-MPL Tau 0.46 0.12 0.31 0.38 0.46 0.55 0.62
Shap-MPL Eucl. Dist. 36.77 7.11 27.02 31.63 37.10 41.83 45.78
Shap-MPL 4in4 2.27 0.81 1.00 2.00 2.00 3.00 3.00
Shap-MPL Eucl. Top 4 8.33 4.85 3.16 4.69 7.28 10.95 15.17

Shap-Uni Tau 0.23 0.10 0.10 0.16 0.23 0.30 0.36
Shap-Uni Eucl. Dist. 49.15 5.26 42.49 45.52 49.04 52.73 56.02
Shap-Uni 4in4 1.46 0.81 1.00 1.00 1.00 2.00 2.00
Shap-Uni Eucl. Top 4 18.08 7.17 8.54 13.19 17.97 23.02 27.48

Shap-Mean Tau 0.46 0.14 0.28 0.37 0.46 0.57 0.65
Shap-Mean Eucl. Dist. 36.62 8.16 25.57 30.66 36.88 42.14 47.12
Shap-Mean 4in4 2.18 0.82 1.00 2.00 2.00 3.00 3.00
Shap-Mean Eucl. Top 4 10.53 6.14 3.46 5.57 9.33 14.56 19.39

Notes : Numbers represent raw measured differences between Shapley
AACs and other methods on the Out of Time sample.

Table 2: Raw Difference Between Shapley and Other AACs Methods (Mortgage Model)

Mean SD 10th Q 25th Q 50th Q 75th Q 90th Q
Shap-MPL Tau 0.52 0.10 0.40 0.46 0.53 0.59 0.64
Shap-MPL Eucl. Dist. 38.35 6.53 30.17 33.80 38.08 42.57 46.97
Shap-MPL 4in4 2.72 0.76 2.00 2.00 3.00 3.00 4.00
Shap-MPL Eucl. Top 4 4.68 3.98 1.41 2.00 3.32 6.16 9.43

Shap-Uni Tau 0.49 0.12 0.34 0.41 0.50 0.58 0.64
Shap-Uni Eucl. Dist. 40.34 7.97 29.67 34.26 40.32 46.28 50.89
Shap-Uni 4in4 2.24 0.85 1.00 2.00 2.00 3.00 3.00
Shap-Uni Eucl. Top 4 12.10 9.40 3.32 5.20 7.04 22.15 25.51

Shap-Mean Tau 0.61 0.12 0.45 0.54 0.63 0.70 0.75
Shap-Mean Eucl. Dist. 32.29 7.95 22.27 26.40 31.71 37.79 43.05
Shap-Mean 4in4 3.09 0.58 2.00 3.00 3.00 3.00 4.00
Shap-Mean Eucl. Top 4 5.83 7.65 1.00 1.41 2.45 5.48 21.00

Notes : Numbers represent raw measured differences between Shapley
AACs and other methods on the Out of Time sample.
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4.2 Placebo Testing

4.2.1 Within AAC Methodology Variation

Before discussing the results of our placebo testing analysis, we first briefly note the dif-

ference in variation in cross-boostrap model ECDFs across observations. Recall that each

observation has 50 different predictions and thus AACs within methodology from each boot-

strap model. This means there are 1,225 cross-boostrap model AAC differences, and for each

observation, we can construct an ECDF of these differences.

Let us take two sample observations from the OOT sample of the credit card model as

examples. Figure (1) depicts the ECDFs of each these observations’ 1,225 cross-boostrap

model AAC differences. It is evident that these distributions are significantly different.

Looking at Figure ( 1 ), we see that for one of these observations, nearly 100% of cross

model Shapley’s lead to Kendall Tau’s of below 0.8, while for the other around only 5% lead

to such measures. This continues to hold when looking at the Euclidean Distance measure,

where one yields 100% under a measure of 20 while the other only about 5%. This large

difference also shows up in the Top 4 measures seen in Figure ( 1 ); for one account only

about 25% of cross model Shapley’s lead to all 4 Top 4 AACs aligning while for the other

over 50% do. This indicates that one of these observations is a kind of outlier in terms of the

correlations between its attributes, with high variations across bootstrap models. However,

for other observations, mean risk drivers stay relatively constant and the different bootstrap

models tend to agree.

This highlights that there is substantial variation across models in derived AACs for the same

AAC methodology as well as substantial differences in this variation across OOT observa-

tions. This latter point is why each observation’s between-AAC method derived distance

should be compared to its observation-specific ECDF as some observations have inherently

greater variation in their predictions, risk drivers, and thus AACs due to how their attributes
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(a) Kendall Tau (b) Euclidean Distance

(c) 4 in 4 (d) Top 4 Euclidean Distance

Figure 1: Between Model Variation in AACs

compare to the development sample.
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4.2.2 Testing Results

Table (3) re-frames all of our distance measures for the credit card model and mortgage

model based on our pseudo p-value approach. The table indicates the percentage of the

OOT sample for whose between-method distance measures fall into the extreme tails of

their between-model distance measures’ distribution (we focus on the extreme 1/5/10% single

sided tails). Here we see, starting first with the card model, that for all of our measures

across the full set of AACs (Kendall Tau and Euclidian Distance) for all approaches the

majority of observations’ measures are ‘significant’ in in our use of the term; focusing on

the 5% level the range of accounts indicating ‘meaningful/significant’ differences range from

83-100%. For our more restrictive measures focused on the top 4 AACs the results are more

mixed. For Shap-MPL difference, slightly more than 25% of observations have top 4-in-4

measures in the extreme 5% tail and nearly 50% if we look at the Top 4 Euclidian distance; a

very similar picture emerges from Shap-Mean measures as well. Thus for measures based on

all AACs, the Mean and MPL approaches clearly lead to ‘significantly’ different results than

Shapley, while if we restrict our focus to the top 4, there is enough variation even simply

between models, that the results are less clear. For the Univariate approach however, this

ambiguity is less pronounced as 66% have 4-in-4 measures in the extreme 5% tail of their

between model distribution; similarly over 90% are in the 5% tail for the Top 4 Euclidean

Distance measure.

Similarly for the mortgage model the Kendall Tau and Euclidean distances are clearly in

the extreme tails of the ECDFs. And again, when focused on the more restrictive 4-in-4 we

get somewhat more mixed results with roughly 50% or more of observations falling in the

extreme 5% tail for the Shap-MPL and Shap-Uni difference, and only around 25% for the

Shap-Mean; however the Top-4 Euclidean distances are again more pronounced in this model

than the cards model. Once again, this confirms that the Univariate methodology deviates

the most from the other methodologies, while MPL and Mean tend to cluster together.
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Table 3: Percentage of Accounts’ Differences ‘Significant’ Between Shapley and Other AACs
Methods

Credit Card Model Mortgage Model
1% Sig 5% Sig 10% Sig 1% Sig 5% Sig 10% Sig

Shap-MPL Tau 0.81 0.90 0.94 0.99 1.00 1.00
Shap-MPL Euc. Dist 0.76 0.86 0.91 0.98 0.99 0.99
Shap-MPL 4in4 0.19 0.29 0.37 0.42 0.46 0.49
Shap-MPL Euc. in4 0.26 0.48 0.61 0.73 0.85 0.90

Shap-Uni Tau 1.00 1.00 1.00 1.00 1.00 1.00
Shap-Uni Euc.Dist 1.00 1.00 1.00 0.98 0.99 1.00
Shap-Uni 4in4 0.53 0.66 0.74 0.61 0.65 0.68
Shap-Uni Euc. in4 0.74 0.91 0.95 0.90 0.95 0.96

Shap-Mean Tau 0.78 0.87 0.91 0.96 0.99 0.99
Shap-Mean Euc.Dist 0.74 0.83 0.87 0.90 0.95 0.97
Shap-Mean 4in4 0.21 0.33 0.41 0.22 0.26 0.29
Shap-Mean Euc. in4 0.40 0.62 0.72 0.64 0.74 0.80

Notes : Numbers represent percent of raw differences that are in
the X% tail of their between-model distribution of distances.
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4.3 Differences vs. Risk

For our third analysis we compare our difference measures to the observations’ predicted

risk level, these are presented in Tables 5 and 6 for our credit card and mortgage model

respectively. Here we see, again starting with the credit card model, a clear link between risk

and our measures, with those less risky (closer to the accept region) having more dissimilar

derived AACs (for Tau and 4-in-4 larger measures indicate similarity while for the Euclidean

measures smaller ones do). Note here that the 4-in-4 regression results for the quantiles are

somewhat misleading as there are only 5 possible results for the underlying measure (0-4)

and so for this measure the only meaningful result is the mean regression. These results

indicate that, beyond the previous results indicating these approaches lead to significantly

different AACs, this effect is more substantial for those more likely to be on the border of

being accepted and thus presumably those for whom meaningful and stable AACs are more

important.

Results are similar for the mortgage model for the measures based on the full set of AACs

(Kendall Tau and Euclidean Distance), though differ for those based on Top 4 for the Uni-

variate and Mean approach. The 4-in-4 regression for Univariate and Means both have the

opposite sign, and opposite signs also occur for the Top-4 Euclidean Distance at the lower

quantiles. This reflects in part the restrictiveness of focusing on the Top 4. It also likely

reflects aspects unique to the mortgage model, such as more factor variables, which reduces

AAC variability for low risk customers.
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Table 4: Regression Results: Distance Measures vs. Predicted Risk (Credit Card Model)

Mean 10th Q 25th Q 50th Q 75th Q 90th Q
Shap-MPL Tau 0.13 0.21 0.17 0.13 0.06 0.02

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Shap-MPL Eucl. Dist. -6.99 -0.81 -2.85 -7.78 -10.26 -11.64

(0.48) (0.74) (0.65) (0.54) (0.54) (0.58)
Shap-MPL 4in4 0.13

(0.06)
Shap-MPL Eucl. Top 4 -3.89 -0.00 -1.11 -3.20 -5.63 -8.77

(0.33) (0.22) (0.25) (0.32) (0.48) (0.66)

Shap-Uni Tau 0.14 0.15 0.15 0.14 0.14 0.14
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Shap-Uni Eucl. Dist. -7.03 -7.94 -7.03 -7.29 -7.13 -6.82
(0.35) (0.58) (0.50) (0.46) (0.51) (0.63)

Shap-Uni 4in4 0.91
(0.05)

Shap-Uni Eucl. Top 4 -8.87 -11.23 -11.31 -7.99 -6.53 -6.88
(0.48) (0.68) (0.68) (0.73) (0.77) (0.76)

Shap-Mean Tau 0.11 0.29 0.20 0.11 -0.04 -0.10
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Shap-Mean Eucl. Dist. -5.83 7.16 2.60 -6.59 -10.87 -15.31
(0.56) (0.65) (0.63) (0.59) (0.53) (0.56)

Shap-Mean 4in4 0.86
(0.06)

Shap-Mean Eucl. Top 4 -6.03 -3.27 -3.74 -5.79 -7.70 -9.10
(0.42) (0.36) (0.40) (0.52) (0.69) (0.68)

Notes : Numbers represent coefficients of regressing risk against
distance measure, standard errors are in parenthesis.
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Table 5: Regression Results: Distance Measures vs. Predicted Risk (Mortgage Model)

Mean 10th Q 25th Q 50th Q 75th Q 90th Q
Shap-MPL Tau 0.08 0.14 0.11 0.07 0.05 0.04

(0.00) (0.01) (0.00) (0.00) (0.00) (0.00)
Shap-MPL Eucl. Dist. -6.27 -4.33 -4.83 -5.76 -7.29 -8.90

(0.24) (0.36) (0.34) (0.32) (0.32) (0.37)
Shap-MPL 4in4 0.92

(0.03)
Shap-MPL Eucl. Top 4 -4.10 -0.67 -1.69 -3.76 -6.81 -10.15

(0.15) (0.07) (0.08) (0.11) (0.16) (0.34)
Shap-Uni Tau 0.06 0.07 0.07 0.08 0.05 0.03

(0.00) (0.01) (0.01) (0.01) (0.00) (0.00)
Shap-Uni Eucl. Dist. -5.46 -4.38 -6.02 -7.16 -5.44 -4.89

(0.31) (0.33) (0.34) (0.41) (0.60) (0.79)
Shap-Uni 4in4 -1.26

(0.03)
Shap-Uni Eucl. Top 4 -4.45 2.96 2.95 -2.16 -20.36 -8.62

(0.37) (0.15) (0.18) (0.37) (0.47) (1.45)
Shap-Mean Tau 0.17 0.25 0.20 0.16 0.13 0.11

(0.00) (0.01) (0.01) (0.01) (0.00) (0.01)
Shap-Mean Eucl. Dist. -11.58 -8.24 -9.66 -11.77 -13.40 -15.07

(0.27) (0.40) (0.33) (0.35) (0.37) (0.49)
Shap-Mean 4in4 -0.05

(0.02)
Shap-Mean Eucl. Top 4 -8.15 1.19 -0.56 -1.72 -15.91 -21.71

(0.28) (0.09) (0.09) (0.14) (0.94) (0.32)

Notes : Numbers represent coefficients of regressing risk against
distance measure, standard errors are in parenthesis.
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4.4 Sensitivity

For our last analysis we investigate the sensitivity of the different AAC methodologies to

small perturbations in the data (we note here again that the Univariate approach, by its

design, is not affected by such perturbations). Figures 3 and 5 plot the Kendall Tau and

Euclidean Distance and how it changes within observation as the data is perturbed for the

Card and Mortgage Model.

Unlike in a linear model which would be projected to change in a relatively uniform way

following a data perturbation, in an ML model, we might expect potentially sharp changes

in predictions, risk drivers, and thus reason codes, due to nonlinearities and interactions.

Hence, a low sensitivity to data perturbations is not necessarily a desirable feature in an

AAC, but the “right” sensitivity is. The Shapley method is designed to take into account

nonlinearities and interactions, and so we can expect the changes following the perturbation

in Shapley-derived AACs to relatively accurately reflect the changes that arise due to the

structure of the model. This is reflected in the red lines in figures (2) and (3) and can be

thought of as a baseline for which to evaluate the other AACs.

From the beginning, since the univariate method does not by definition move with any

change in perturbation in the (x−i) covariates, this can be thought of as an issue with this

methodology. On the other hand, the picture with the MPL and and Mean approaches show

the opposite issue - they are much more sensitive to perturbations in the data than Shapley

across the board. We do notice some difference in the relation between the MPL and Mean

breakdown between models with the MPL deviating further than the Mean approach for

the mortgage model, this may reflect aspects of the mortgage model related to categorical

variables.

These results are perhaps understandable as Shapley consists of an average of a variety

of combinations of variables’ perturbations, while MPL and the mean methods will only
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consider a single variable at a time, with a single variable’s effect on output potentially

changing drastically due to interactions. This lack of stability of these AACs when faced with

these perturbations can be thought of as a failure of the univariate approach in understanding

multi-dimensional relationships.

(a) Kendall Tau (b) Euclidean Distance

(c) Top 4 in 4 (d) Top 4 Euclidean Distance

Figure 2: AAC Method Sensitivity (CC Model). Blue=MPL, Red=Shap, Grey=Mean
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(a) Kendall Tau (b) Euclidean Distance

(c) Top 4 in 4 (d) Top 4 Euclidean Distance

Figure 3: AAC Method Sensitivity (Mortgage Model). Blue=MPL, Red=Shap, Grey=Mean
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5 Conclusion

We have investigated various AAC approaches and compared them and analyzed their results

in several dimensions. We find, using Shapley as a ground truth due to its theoretical and

axiomatic ‘correctness that the alternative methodologies lead to clearly different AACs, and

also that these differences are significant based on a synthetic placebo testing-derived pseudo

p-value. Within this finding we find the Univariate approach to be the most dissimilar based

on a variety of metrics, while the MPL and Mean methods are less dissimilar, and also

comparable to each other due to similar methodologies between the two. We then find that

for all of these methodologies, differences are most pronounced for the least risky customers

on the border of the accept region, meaning the initial findings are most likely to affect those

for whom AACs are most actionable. Lastly we find that Univariate method is invariate to

small data perturbations that emphasize interaction effects, and so loses information relative

to Shapley which is able to capture these ML-specific model features. On the other hand,

MPL and Mean methodologies are much more unstable with respect to data perturbations

than Shapley, indicating a potential lack of robustness of these methodologies due to their

narrow univariate focus compared to Shapley.
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A Data and Models

In this paper, we analyze 2 XGBoost-based risk models, one of which being a retail credit
card risk model, and the second being a mortgage risk model. Even before ML came into use,
credit cards were in the vanguard in the replacement of manual underwriting with Automated
Underwriting Systems (AUSs) due to the high volume of decisions necessary as well as the
availability of large quantities of data. In the same vein, industry practitioners in credit card
modeling expanded into machine learning relatively early on, due to its potential as one of the
most fruitful areas of machine learning adoption. This is due to the availability of extremely
large credit card datasets (both long and wide, with millions/billions of observations and
thousands of variables) which could then be mined to extract the potentially complicated
nonlinear and interacting elements of consumer card behavior. As ML adoption spreads
throughout the industry, use cases for ML have also rapidly diversified, with ML models not
only expanding into mortgage modeling, upon which we base our second model, but also in
such diverse areas as fraud and marketing.9

Most credit risk models in the retail credit world are divided into underwriting/acquisitions-
level scorecards, and account management models, with the primary differences being in the
data and usage. Acquisitions-level models are primarily used for booking customers, and
as they do not yet have internal account performance data, are usually restricted to us-
ing application-level predictors and credit bureau data. Account management/performance
monitoring models on the other hand are estimated on customers that are already booked
and also have seasoned account performance data, typically being used for things like line
management, loan modification, and portfolio monitoring. This means that they can lever-
age observed customer behavior - indeed, the best guess of a customer’s future behavior is
in their past behavior. In fact, this behavior can exhibit nonlinear and highly interacting
relationships and is potentially an ideal use case for machine learning. It is upon this consid-
eration, as well as the richer data that can be used, that both of the models that we study
are account management/performance monitoring models. It is important to note
that the kind of data these models are estimated with is by necessity entirely consisting of
booked loans since one cannot directly observe performance for loans that are rejected.10

We now describe the details of model development and provide high-level information on the
main risk drivers and shape of relationships in the two models.

For the credit card model, the data we use is a random sample of internal OCC supervisory
data on credit card performance at major banks.11 We choose our target variable to be
the occurence of a 90 day delinquency of a customer within a year of the snapshot date,
a typical performance window and target variable for a basic risk scorecard, and so our
model is solving a binary classification problem. We select a snapshot of 150,000 general
purpose cards with at least 12 months of performance from December 2013 and follow their
performance for a year. As an out-of-time set upon which we estimate our reject reasons, we

9For an example of an application of Deep Learning to mortgage risk, see Sirignano et al. (2018).
10Several reject inference approaches can help correct this selection bias, but we generally do not have the

data to conduct this. However, this issue is largely tangential to our analysis of AAC methods.
11This data is known as OCC Credit Card Metrics.
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choose to take a snapshot of 150,000 general purpose cards, again with at least 12 months of
performance. Note that there is some overlap in the accounts between the two sets, however,
they are from non-overlapping times, so this should minimally affect the out-of-sample nature
of these observations.

For the mortgage model, we use a similar approach, but leverage a GSE’s publically available
single family performance data for the analysis.12 In this case, we choose our target variable
to be 90 DPD within two years of the snapshot day, in deference to the typically slower
dynamics of mortgage loans compared to credit cards. In addition, we also jointly estimate
a prepay exit in a competing-risks style approach to take into account the possibility of
the borrower refinancing or selling their home, so the model is a multiclass classification
problem where we focus only on the PD side. Once again we take only loans with at least
12 months of performance and take a snapshot from January 2015, giving us 300,000 loans
in the training sample. The OOT set for which reject reasons are calculated is from January
2017, also comprising a set of around 300,000 loans.

Both the datasets contain a typical rate of missing observations and outliers. We pre-process
the data using missing value inference, assuming a missing-at-random (MAR) missing value
structure, utilizing boosted trees to estimate missing variable xi given all other covariates
(xn)n6=i. Outliers are winsorized differentially on a variable-by-variable basis - more details
are available upon request.

The functional form that we choose for both models is boosted trees, leveraging the open-
source XGBoost algorithm. This is a widely adopted methodology in banking and other
industries, and regularly is one of the top contenders in horse races between other method-
ologies, such as deep neural nets (deep learning), random forests, or SVNs. The disadvantage
of this methodology is its non-smooth nature - indeed the relationship between covariates
and predictions is by definition stepwise and commonly exhibits large discontinuous jumps
from small movements in the covariate. These possibly unexpected jumps are a source of
potential risk, and also make calculating some explainability statistics more difficult since
there is no gradient for which to calulate them for. This is in contrast to, say, any kind of
neural network approach which gives a smooth function as output. Due to the discontinuous
nature of boosted trees, some practitioners will use them in an ensemble with neural net-
works. However, by and large banks are comfortable with using boosted trees in a standalone
fashion. We follow this approach and use both standalone as well.

We estimate the credit card model with a joint hyperparameter and model selection rou-
tine, while in the mortgage model the already parsimonious number of features (34) only
necessitated a hyperparameter search. In the credit card model, we start with a set of 472
covariates that mostly consist of trended customer internal performance statistics (such as
balance payoff, utilization, past due amounts) and credit bureau attributes (such as external
card utilization, age of oldest account, number of external tradeline delinquencies) along
with some customer-reported characteristics such as borrower income. We utilize an early

12See https://capitalmarkets.fanniemae.com/credit-risk-transfer/

single-family-credit-risk-transfer/fannie-mae-single-family-loan-performance-data
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stopping function on 5-fold cross-validated AUC (area under the curve) to constrain the
number of trees, and the other hyperparameters such as learning rate η, and depth of trees
are selected using a simultaneous grid search that also selects for 5-fold cross-validated AUC
on the training set. We set γ to be .5 to penalize if a single variable is too influential to help
mitigate overfitting. The approach for hyperparameter selection in the mortgage model is
the same but we use an “mlogloss” target due to the multiclass classification problem that
it is solving. For visualization of the searches, see figures (7) and (8).

For the remainder of our analysis, since we are analyzing reject reasons, we must construct
a hypothetical rule for rejection. Setting any kind of accept/decline bound implies weighing
the costs of accepting false positives (those we flag as risky potential defaulters who do
not subsequently default) and rejecting false negatives (those we flag as low-risk customers
that do subsequently default). Banks use multiple methods to set these bounds, and indeed
oftentimes these bounds are not simple univariate rules but instead incorporate other risk
scores or risk factors in a dual matrix framework. These bounds are set upon various profit
and risk considerations and depend on the product strategy of the bank and their general
risk appetite. For simplicity, we will keep to a simple univariate accept/decline bound on
the model’s predicted probability of default (PD). We choose our cut-off to be 0.1 PD,
which approximately maximizes F-score for both models, although weights more towards
prioritizing recall than precision - see figure (9) and (10) for visualization.

We can also give an approximation of the general relationships from features to predictors
in what are known as Accumulated Local Effects, or ALE plots in figures (11) and (12).
These attempt to understand the sensitivity of the prediction to a certain covariate Xi in a
realistic area of the feature space while at the same time holding the other X−i covariates
constant, to avoid confounding the effects of correlated covariates changing with the actual
effect of the covariate of interest to the prediction. This is accomplished by finding the
effect of highly local perturbations of the Xi covariate with the X−i covariates set at their
mean conditional on Xi. We can also overlay these ALE plots with a sample of observations’
Shapley contributions, which we will discuss in more depth in later sections. Conceptually,
there is a parallel between ALE plots and Shapley values since they both calculate the effect of
perturbing the variable of interest on the prediction. However, ALE plots explicitly assume
the non-perturbed covariates are set at the conditional mean, while Shapley values X−i
covariates are specific to the observation being examined, and are perturbed with respect
to all possible combinations of the other covariates - see Section (2.1). In addition, the
weighting between ALE and Shapley is slightly different as can be seen in the cases where
data is relatively sparse in certain ranges of the data as in figure (12).

B Figures and Tables
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Figure 4: Credit Card Model: Joint variable selection and model estimation routine
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Figure 5: Credit Card Model: Hyperparameter search in final iteration
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Figure 6: Mortgage Model: Hyperparameter search
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Figure 7: Credit Card Model: XGBoost Variable Importance Metrics
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Figure 8: Mortgage Model: XGBoost Variable Importance Metrics
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Figure 9: Credit Card Model: Performance statistics on OOT set. Cutoff set at .1
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Figure 10: Mortgage Model: Performance statistics on OOT set. Cutoff set at .1
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Figure 11: Credit Card Model ALE Plots for top 4 XGBoost ”Gain” variables, overlaid
with sample of Shapley values ”trained” on training set. Rejected customers with PD> .1
highlighted.
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Figure 12: Mortgage Model ALE Plots for top 4 XGBoost ”Gain” variables, overlaid with
sample of Shapley values ”trained” on training set. Rejected customers with PD> .1 high-
lighted.
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