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Summary
We present a decomposition method for transition matrices to identify forces driv-

ing the persistence of economic status across generations. The method decomposes

differences between an estimated transition matrix and a benchmark transition

matrix into portions attributable to differences in characteristics between individ-

uals from different households (a composition effect) and portions attributable to

differing returns to these characteristics (a structure effect). A detailed decomposi-

tion based on copula theory further decomposes the composition effect into portions

attributable to specific characteristics and their interactions. To examine poten-

tial drivers of economic persistence in the USA, we apply the method to white

males from the 1979 US National Longitudinal Survey of Youth. Depending on the

transition matrix entry of interest, differing characteristics between sons from dif-

ferent households explain between 40% and 70% of observed income persistence,

with differing returns for these characteristics explaining the remaining gap. Fur-

ther, detailed decompositions reveal significant heterogeneity in the role played by

specific characteristics (e.g., education) across the income distribution.

1 INTRODUCTION

A topic of recurring interest among social scientists is the persistence of economic status between parent and offspring.1 While
great strides have been made to improve empirical estimates of income persistence (see Solon, 1999, for a review and Mazumder,
2005), for a recent reassessment), much remains to be understood about the drivers or determinants of this persistence (Black
& Devereux, 2011). The existing literature that has sought to understand the driving mechanisms of this persistence has mainly
focused on mean effects such as the intergenerational elasticity of income (IGE) (Björklund, Lindahl, & Plug, 2006; Blanden,
Gregg, & Macmillan, 2007; Bowles & Gintis, 2002; Cardak, Johnston, & Martin, 2013; Lefgren, Lindquist, & Sims, 2012; Liu
& Zeng, 2009; Mayer & Lopoo, 2008; Richey & Rosburg, 2017; Shea, 2000). While informative, summary measures such as the
IGE may conceal interesting details regarding differences in economic mobility at different points across the distribution (Black
& Devereux, 2011). Alternative measures such as transition matrices provide a more “complete” picture of intergenerational
persistence by looking across the entire income distribution (Bhattacharya & Mazumder, 2011; Black & Devereux, 2011; Jäntti
et al., 2006). The literature on transition matrices, however, has focused on point estimation rather than understanding the
driving mechanisms behind the estimates.2 A closer examination of the drivers underlying the transition matrix would improve

1Interest in intergenerational status persistence in general has a long history, especially in the field of sociology (see Blau & Duncan, 1967). While sociologists
have been primarily concerned with mobility in social class positions (e.g., occupations), economists have focused more on income or wealth mobility (Erikson
& Goldthorpe, 2002). Our discussion will focus solely on income mobility, which has a large recent history in the economics literature.
2One notable exception in the intergenerational mobility setting is Bhattacharya and Mazumder (2011). They propose a nonparametric approach to estimate
conditional transition matrices and apply the approach to better understand black–white differences in mobility. However, the curse of dimensionality limits
their analysis to the role of a single covariate at a time, and the authors explore the role of cognitive ability and education.
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our understanding of income persistence and the ability to evaluate policies aimed at equality of opportunity. With this goal
in mind, we propose a “decomposition” method for transition matrices and use the method to examine drivers of economic
persistence in the USA.

More generally, transition matrices are a tool that can be used to understand complex links in the distribution of a variable over
time. Prime examples include, but are not limited to, intragenerational mobility and intergenerational mobility, as well as credit
risk ratings migrations. The method we propose explores the role of intermediate variables within these links. In particular,
we focus on intergenerational economic mobility transition matrices as both an important application of the method and as a
working example to ease exposition. Thus our contribution is twofold: we provide a method to understand the drivers of any
transition matrix, and we add to the economic mobility literature by broadening our understanding of the drivers of economic
persistence in the USA.

The method we propose is not a decomposition in the traditional sense but builds directly on the decomposition literature.
Traditional decompositions seek to understand differences in a variable between two groups, such as differences in incomes
between men and women. Our goal is to understand the link between a variable over time, such as incomes across generations.
We frame this as trying to understand differences between an (actual) empirical transition matrix and a hypothetical transition
matrix where there is no link between parental and children's incomes (i.e., an “independent” transition matrix). We decompose
these differences into two components: (1) the portion attributable to differing characteristics (e.g., education, experience)
between children from different households (referred to as the composition effect); and (2) the portion attributable to differing
returns to characteristics—a wage structure—between children from different households (referred to as the structure effect).
We then extend the basic decomposition using copula theory to perform a detailed decomposition on the composition effect
Rothe (2015). The detailed decomposition attributes portions of the composition effect to specific variables (e.g., education,
experience) and their interactions.

Our proposed method begins by recognizing that transition matrices are representations of multiple conditional distributions
(e.g., distributions of children's incomes conditional on parental income grouping). Analogously, we construct a hypotheti-
cal independent matrix with multiple, but identical, “baseline” income distributions. Understanding the differences between
the empirical and independent matrices therefore begins with the underlying distributions from which the matrices are con-
structed. Specifically, we analyze what the differences between the (actual) distributions underlying the empirical matrix and
the “baseline” distribution underlying the independent matrix imply for the empirical–independent matrix difference. Thus our
decomposition method is based on an array of counterfactual experiments that ask how outcomes for children from different
households would change if we varied certain characteristics and/or wage structures. The counterfactual distributions are then
recast into counterfactual transition matrices that are used to attribute portions of the empirical–independent differences to
specific effects and variables.

To examine the drivers of economic persistence in the USA, we apply the decomposition method to the intergenerational
income mobility of white males surveyed by the 1979 National Longitudinal Survey of Youth (NLSY79). We base our wage
structure on an extended Mincer equation that includes education, experience, and cognitive and non-cognitive ability mea-
sures. While the general method we propose extends to any function of transition matrices, we focus our application on two
summary indices of this matrix and the top and bottom rows of the matrix, which represent the transition probabilities for
children from the poorest and wealthiest households. The summary indices indicate an even 50:50 split between the compo-
sition and structure effect in explaining the observed mobility gap. They also point to years of education and cognitive ability
to be the main drivers of the composition effect, accounting for 20% and 15% of the overall observed gap, respectively. How-
ever, these summary indices hide underlying heterogeneity in the effects. Across transition probabilities for children from the
poorest and wealthiest households, the composition effect explains between 38% and 72% of the observed mobility gap, with
the structure effect explaining the remaining gap. Further, in examining why sons from the wealthiest homes are more likely
to end up in the upper quartile, education differences between households explains 25% of the gap. But looking at why they
are less likely to end up in the bottom quartile, education only explains about 16% of the gap. A similar story emerges when
we look at sons from the poorest households. Differences in education explain 33% of why they are less likely to end up in
the upper quartile but only 15% of why they are more likely to end up in the bottom quartile. Differences in measured cog-
nitive ability plays a significant role in explaining why they seem to be stuck in the bottom quartile. While we are unable
to attach causal claims to these findings, and thus encourage the reader to interpret these results with caution, they seem to
indicate that policies that aim to equalize educational outcomes may have a greater effect on the right tail of the income distri-
bution (i.e., who ends up in the upper quartile) than on the left tail (i.e., who ends up in bottom quartile). Information on such
heterogeneities, which is valuable information to assess overall policy effects, are precisely the kind of findings our method
aims to uncover.
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2 METHODS

2.1 Transition matrices and mobility indices
A transition matrix depicts the probability a child will have adult earnings (Yc) in a specific income bracket given that his/her
parents' income (Yp) was in a certain income bracket.3 Transition matrices have several advantages over mobility measures
that focus only on the average degree of transition (e.g., intergenerational elasticities or correlation coefficients). Transition
matrices provide more information about mobility across the entire distribution, allow for asymmetric patterns across the dis-
tribution (e.g., more mobility at the top than the bottom), and allow subgroup comparisons across the entire distribution (Black
& Devereux, 2011; Jäntti et al., 2006).4

More specifically, let there be m income brackets (defined as equal percentile groups) with boundaries 0 < 𝜁1 < 𝜁2 < · · · <
𝜁m−1 < ∞ for the parental distribution and 0 < 𝜉1 < 𝜉2 < · · · < 𝜉m−1 < ∞ for the children's distribution. Also let 𝜋 denote the
unconditional probability of falling into a bracket (e.g., 𝜋 = 0.25 for a quartile transition matrix—the empirical application of
this paper). A transition matrix (P) is an m × m matrix with elements pij that represent the conditional probability that a child
is in income bracket j given his/her parents were in income bracket i or

pij =
Pr(𝜁i−1 ⩽ Yp < 𝜁i and 𝜉j−1 ⩽ Yc < 𝜉j)

Pr(𝜁i−1 ⩽ Yp < 𝜁i)
,

where
∑m

j=1 pij = 1. Here we see that each pij, and thus the matrix P, is dependent on the distributions of children's incomes
conditional on parental income group—specifically its relation to the 𝜉j boundary cut-off points.

The top panel in Table 1 (“Empirical matrix") provides a quartile transition matrix derived for white males from the NLSY79
data (Section 3 provides a full discussion of the data used). Entries in Table 1 (top panel) indicate the probability a son will be
in each quartile of the income distribution conditional on parents having been in a specific quartile of the income distribution.
The top left entry (41.5) tells us that for parents in the bottom quartile of the income distribution their son has about a 42%
chance of ending up in the bottom quartile of his generation's income distribution. Similarly, the top right entry (12.4) tells us
that the same son has only about a 12% chance of ending up in the top quartile of the income distribution. Comparatively, a son
whose parents were in the top quartile of the income distribution has a 13% and 42% chance of ending up in the bottom and top
quartile, respectively, of their generation's income distribution.

The intergenerational mobility portrayed in a transition matrix can be summarized through mobility indices, M(P), which map
the transition matrix P into a scalar value (Formby et al. 2004). These mappings can be useful in ranking transition matrices
according to various welfare criteria (e.g., Dardanoni, 1993; Kanbur & Stiglitz, 2015; Maasoumi, 1998). A number of mobility
indices have been proposed, each reflecting a different way to measure mobility.5 Therefore, researchers have a degree of
discretion in how they summarize the transition matrix. While our decomposition approach extends to any of these proposed
summary indices, we consider two indices shown by Dardanoni (1993) to be “coherent” in that they rank order transition
matrices in accordance with a class of social welfare functions.6

The first index is a measure proposed by Bartholomew (1982) and can be interpreted as the expected number of boundaries
a child might cross:

M1 =
∑

i

∑
j
𝜋ipij|i − j|. (1)

The second index is related to the second largest eigenvalue (𝜆2) of the transition matrix, which is considered a measure of
the rate at which a Markov chain converges to its steady state (i.e., the larger the 𝜆2, the slower the convergence). Because the
second largest eigenvalue is also related to the correlation of status between generations or the speed of escape from initial
conditions, it is commonly proposed as a measure of social immobility (Maasoumi, 1998; Sommers & Conlisk, 1979; Theil,
1972). We focus on a similar measure based on the second largest eigenvalue (�̂�2) of a “symmetrized” version of the transition
matrix P (Sommers & Conlisk, 1979):

M2 = 1 − |�̂�2|, (2)

3There is a distinction between “size” transition matrices and “quantile” transition matrices. The former defines boundaries of the matrix exogenously—for
example, every $10,000—while the latter defines them endogenously—for example, every 25th percentile. We focus solely on quantile transition matrices.
Interested readers can refer to Formby, Smith, and Zheng (2004) and references therein for an in-depth discussion of size and quantile matrices.
4Transition matrices, however, are not without shortcomings. For example, a main criticism, voiced by Bhattacharya and Mazumder (2011), is the reliance on
arbitrary cut-offs in the distribution.
5See Maasoumi (1998) or Checchi, Ichino, and Rustichini (1999) for relatively comprehensive overviews of summary mobility measures and Formby et al.
(2004) for a discussion of their asymptotic properties.
6We thank an anonymous referee for referring us to the Dardanoni (1993) article.
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TABLE 1 Transition matrices and implied effects for white males in NLSY79

Matrix Parental quartile Childs' quartile
1st 2nd 3rd 4th

1st 41.47 (2.35) 27.15 (2.17) 19.03 (1.98) 12.36 (1.73)

Empirical 2nd 28.45 (2.04) 24.34 (1.96) 26.54 (1.87) 20.67 (1.95)
matrix 3rd 17.07 (1.95) 28.25 (2.05) 29.30 (2.11) 25.37 (2.15)

4th 13.02 (1.85) 20.26 (2.03) 25.13 (1.89) 41.60 (2.17)
1st 25.00 25.00 25.00 25.00

Independent 2nd 25.00 25.00 25.00 25.00

matrix 3rd 25.00 25.00 25.00 25.00

4th 25.00 25.00 25.00 25.00

1st 32.70 (2.48) 25.68 (2.68) 20.14 (3.11) 21.48 (3.06)
Counterfactual 2nd 27.20 (2.17) 24.76 (2.42) 28.05 (2.92) 19.99 (2.43)
matrix 3rd 21.10 (2.013) 26.79 (2.44) 28.86 (2.13) 23.25 (2.25)

4th 19.00 (1.77) 22.78 (2.30) 22.95 (2.19) 35.27 (2.24)
Implied 1st 8.76*** (2.64) 1.48 (2.74) −1.11 (2.64) −9.13*** (2.54)

composition 2nd 1.25 (2.21) −0.42 (2.39) −1.51 (2.93) 0.68 (2.25)

effect 3rd −4.03* (2.09) 1.46 (2.29) 0.44 (2.34) 2.12 (1.84)

4th −5.99*** (1.76) −2.52 (2.08) 2.18 (2.07) 6.33*** (1.88)

Implied 1st 7.70*** (2.48) 0.68 (2.68) −4.86 (3.11) −3.52 (3.06)
structure 2nd 2.20 (2.17) −0.24 (2.42) 3.05 (2.92) −5.00** (2.43)
effect 3rd −3.90* (2.01) 1.79 (2.44) 3.86* (2.13) −1.75 (2.25)

4th −5.99*** (1.78) −2.22 (2.30) −2.05 (2.19) 10.27*** (2.24)

Note. Standard errors, based on 200 bootstraps, are in parentheses. Incomes are adjusted by state-level cost-of-living indices.

All results are multiplied by 100 for readability. For effects, asterisks denote statistical significance: *** 1% level; ** 5%

level; * 10% level.

TABLE 2 Mobility indices

Index M (NLSY 1979) M (independent matrix) M (counterfactual)

M1 0.98 (0.027) 1.25 1.11 (0.029)

M2 0.69 (0.027) 1.00 0.85 (0.029)

Note. These are summary index values defined in Section 2.1 for the empirical matrix based

on white males from the 1979 NLSY (panel 1 in Table 1), index values for the independent

matrix (panel 2 in Table 1), and for the counterfactual matrix (panel 3 in Table 1). Standard

errors in parentheses.

where the symmetrized matrix P̂ is defined as

P̂ = (1∕2)[P + ΠP′Π−1]

and𝛱 is the diagonal matrix with the steady-state vector along the diagonal (e.g.,𝜋 = 0.25 across the diagonals in our 4×4 matrix
setting). This measure (M2) can be thought of as a short-run correlation measure, whereas a measure based on the actual matrix
is more of a long-run correlation measure. Thus, for our intergenerational application, a measure based on the symmetrized
version may be more appropriate (Sommers & Conlisk, 1979). Moreover, Dardanoni (1993) shows that the symmetrized index
(M2) is coherent in relation to a class of social welfare functions, whereas the unsymmetrized index is not. Table 2, column 1
and 2, compares the M1 and M2 values for the NLSY79 mobility matrix for white males to the independent mobility matrix.

Most of the existing literature on intergenerational mobility use transition matrices or mobility indices as the final output—that
is, a simple way to summarize empirical estimates of economic mobility (e.g., Checchi et al., 1999; Corak & Heisz, 1999;
Dearden, Machin, & Reed, 1997; Jäntti et al., 2006; Peters, 1992). What we wish to do is take this a step further and understand
the potential driving forces behind the transition matrix and summary indices; specifically, what is driving the immobility
observed in our empirical matrix.

To evaluate such forces, we define an independent matrix to which we compare our actual (empirically estimated) matrix.
Thus our comparison matrix is one where there is no link between parental income and children's income (a 4×4 matrix with all
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entries of 0.25 in our quartile matrix setting). This matrix can roughly be thought of as a “perfect mobility” matrix (Dardononi,
1993; Jäntti et al., 2006) and we seek to understand why we diverge from this hypothetical world. Comparisons of this nature
parallel the common question in the intergenerational mobility literature of “what explains a parent–child income correlation
value of Z,” which essentially asks why the correlation value is different from zero. Therefore, our use of the independent
matrix as our point of comparison is analogous to the comparison of the correlation value to zero.7 For example, consider the
probability that a son ends up in the top quartile given his parents were also in the top quartile (bottom right entry: p44). The
difference between the empirical matrix and the independent transition matrix is 17% (42 − 25); that is, given parents from
the top quartile, males in our sample are 17% more likely to end up in the top quartile than if mobility were reflected by the
independent mobility matrix. What explains this difference? Alternatively, we can compare summary indices of these matrices.
For example, what explains the −0.27 difference between the M1 index value of the NLSY79 mobility matrix for white males
and the M1 value of the independent matrix (0.98 − 1.25)?

We seek to explain how much of these differences are due to differences in returns to characteristics between children from
different households (referred to as the “structure” effect), how much is due to differences in observed characteristics between
these children (referred to as the “composition” effect) and how much of the composition effect is due to specific characteristics.
The indices presented above and the underlying transition matrix are functions of conditional distributions of incomes (i.e.,
distributions of children's incomes conditional on parental income). In order to address our questions of interest, we must conduct
counterfactual experiments on the conditional distributions and then inquire what the counterfactual conditions imply for the
matrix and indices. In this vein, we connect the literature on economic mobility with the literature on decomposition methods.

2.2 Aggregate decomposition
In line with our application (quartile transition matrices), we begin with four non-overlapping groups g ∈ {1, 2, 3, 4}: groups
of children from households in each quartile of the parental income distribution.8 For children in each group g ∈ {1, 2, 3, 4},
we observe an outcome Yg (child's adult log income) and a d-dimensional vector of observables Xg with distributions Fg

Y and
Fg

X , respectively, along with a conditional cumulative distribution function (CDF) Fg
Y|X , which is implicitly defined by a wage

structure Yg = wg(X, 𝜖).
Let 𝜈(F1

Y ,F
2
Y ,F

3
Y ,F

4
Y ) be a function of our empirical transition matrix based on the observed distributions F1

Y ,F
2
Y ,F

3
Y , and F4

Y ;
for example, a summary index (Mi) or a specific entry in the transition matrix (pij). Analogously, define the same function based
on our independent matrix as 𝜈(FB

Y ,F
B
Y ,F

B
Y ,F

B
Y ); the independent matrix is defined as the case where all groups have the same

income distribution as some baseline group: FB
Y (a topic we pick up in section 2.4). Now, define the overall “mobility gap” as

follows:

Δ𝜈
O = 𝜈(F1

Y ,F
2
Y ,F

3
Y ,F

4
Y ) − 𝜈(FB

Y ,F
B
Y ,F

B
Y ,F

B
Y ).

This is the gap between what we actually observe and a world in which children's incomes are independent of their parents'.
To identify how much of this mobility gap is due to structure or composition effects, we rely on the use of counterfactual
distributions. Specifically, for groups g ≠ g′, define the following counterfactual distribution:

Fg|g′
Y (y) = ∫ Fg

Y|X(y, x)dFg′
X (x). (3)

This is a counterfactual distribution of incomes based on individuals with characteristics like those from group g′ and a wage
structure (i.e., returns to those characteristics) like those from group g. The composition effect, or the portion of the overall
mobility gap explained by differences in observed characteristics, is defined as

Δ𝜈
X = 𝜈(F1

Y ,F
2
Y ,F

3
Y ,F

4
Y ) − 𝜈(F1|B

Y ,F2|B
Y ,F3|B

Y ,F4|B
Y ). (4)

7The proposed method can also be extended to compare two empirical transition matrices, for example that of the USA and the UK or even of a single country
across two points in time. Further, we could compare our empirical matrix to a “perfect immobility” matrix. Thus, rather than attempt to understand a mobility
“gap,” one could investigate what underlies the mobility “observed.” Either of these alternatives requires a simple choice of the appropriate comparison
transition matrix.
8The choice to partition into four groups reflects our dataset. With larger sample sizes, one might consider quintile or decile transition matrices.
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The structure effect, or the portion explained by differences in returns to characteristics, is defined as9

Δ𝜈
S = 𝜈(F1|B

Y ,F2|B
Y ,F3|B

Y ,F4|B
Y ) − 𝜈(FB

Y ,F
B
Y ,F

B
Y ,F

B
Y ). (5)

Together, these two components represent an “aggregate” decomposition of the overall mobility gap: Δv
O = Δv

X + Δv
S.

Decomposing the overall mobility gap into separate structure and composition effects will provide interesting insight into
sources of immobility. However, we are also interested in identifying which characteristics (or covariates) drive the composition
effect; that is, what portion of the composition effect can be assigned to specific variables of interest? To investigate this question,
we employ a “detailed” decomposition of the composition effect in Equation 4.10 Several decompositions have been proposed
(see Chernozhukov, Fernandez-Val, & Melly, 2013; DiNardo, Fortin, & Lemieux, 1996; Machado & Mata, 2005) but these
are, in general, “path dependent” (i.e., they depend on the order of the covariate inclusion in the decomposition).11 We apply a
non-path-dependent decomposition based on copula theory introduced by Rothe (2015). In what follows, we briefly outline our
specific use of his procedure and intuition; however, interested readers should refer to Rothe (2015) for a complete description
of the procedure in a more traditional decomposition setting.

2.3 Detailed decomposition
Rothe (2015) shows that the detailed decomposition cannot be additively decomposed into the marginal components of variables
alone; the decomposition must contain interaction terms and a dependence structure (the intuition to each is explained in detail
below). To identify these components and to see how our decomposition proceeds, we refer to the concept of the copula, which
was first introduced by Sklar (1959).12 Sklar's theorem states that any d-dimensional distribution Fg

X can be decomposed into
two parts: the d marginal distributions Fg

Xi
for the random variables (X1,X2, … ,Xd) and the copula function Cg, which is a

multivariate CDF that captures the dependence structure of the distribution:

Fg
X(x) ≡ Cg(Fg

X1
(x1), … ,Fg

Xd
(xd)) for g ∈ {1, 2, 3, 4}.

In other words, the dependence structure of the covariates in Fg
X—captured by the copula function—can be separated from

the individual marginal distributions: the Fg
Xi

's. Also note that the copula function takes as its arguments Fg
Xi
(xi)'s, which are

uniform random variables, rather than the x's themselves.13

Now consider a d-dimensional product set {1, 2, 3, 4,B}d, where an element of the product set (denoted with bold font)
represents a set of d covariate marginal distributions. Let 𝝎 ∈ 𝛀 represent a generic element of this set. For example, if 𝝎 =
(B,B, 1, 1, … , 1), this would denote the set of covariate marginal distributions where the distributions for covariates one and
two are equal to that of group B, and the remaining covariate distributions are equal to that of group 1. Using this notation, we
extend the counterfactual setup from Equation 4. Let the counterfactual distribution of Y, where the wage structure is of group
g, the copula function is of group g′, and the marginal distribution of the lth covariate is equal to the group denoted in 𝝎l, be

Fg|g′,𝝎
Y (y) = ∫ Fg

Y|X(y, x)dFg′,𝝎
X (x), (6)

9The sequence of the decomposition (i.e., whether to introduce the composition or structure effect first) is a choice faced by all decomposition analyzes. We
choose this sequence because it prices characteristics in the composition effect at prices individuals actually face. Further, since we only perform a detailed
decomposition on the composition effect, we believe this sequence is more appropriate for our method. This sequence choice differs from the decomposition
literature focused on discrimination which typically prices characteristics according to the base group—the ‘non-discriminatory’ returns. However, as will be
discussed further in the results section, we do not interpret the structural effect in our setting as a “discrimination” effect.
10Performing a detailed decomposition on the structure effect has conceptual problems regarding the choice of omitted/baseline group for covariates of interest
even for simple linear models (see Fortin, Lemieux, & Firpo, 2011, for a discussion), and therefore we do not pursue such a decomposition.
11This issue of path dependence extends to other decomposition settings; in particular, there is a large body of literature that seeks to decompose inequality
measures into portions explained by between-group effects (i.e., inequality across groups) and within-group effects (i.e., inequality within groups). Shorrocks
(2013) proposed a solution to this issue, which he termed the “Shapley decomposition.” This approach amounts to averaging components of the decomposition
over all possible decomposition paths. A similar solution has also been used in the decomposition of the structure effect in Oaxaca–Blinder decomposition
settings (see Fortin et al., 2011), for a discussion). While this type of approach is feasible in the current setting (specifically in the decomposition of the total
marginal effect discussed below), we believe the approach taken here more closely aligns with assessing possible policy changes - for example, we can learn
the limits of the effect of improving education outcomes in lower income houses.
12See Rothe (2015) for a specific discussion or Nelsen (2006) for a general handling of copula theory.
13In simplest terms, a copula is a multivariate distribution that takes standard uniform random variables as its arguments. Converting the observed covariates into
uniform random variables by mapping them through their marginal distributions allows us to decompose a multivariate distribution into individual marginals
and the dependence structure. The main benefit of this process is that it allows the multivariate distribution to be modeled via two easier-to-handle operations
(individual marginals and a dependence structure). For our setting, it allows us to model the two components separately, simulate counterfactual distributions
that combine these aspects as we see fit, and thus simulate various policy outcomes more flexibly.
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with

Fg′,𝝎
X (x) ≡ Cg′ (F𝜔1

X1
(x1), … ,F𝜔d

Xd
(xd)).

Now the composition effect can be decomposed into a total marginal effect (Δ𝜈
M), which is due to differences in the marginal

distributions between groups, and a dependence effect (Δ𝜈
D), which is due to differences between groups in their copulas:

Δ𝜈
X = Δ𝜈

M + Δ𝜈
D.

Specifically, if we define 1, 2, 3, 4 and B to be specific elements of Ω such that 1 = (1, 1, … , 1), 2 = (2, 2, … , 2), … ,
and B = (B,B, … ,B)—that is, all marginal distributions are from the same group—then the total marginal effect and the
dependence effect are defined as14

Δ𝜈
M = 𝜈(F1

Y ,F
2
Y ,F

3
Y ,F

4
Y ) − 𝜈(F1|1,B

Y ,F2|2,B
Y ,F3|3,B

Y ,F4|4,B
Y );

Δ𝜈
D = 𝜈(F1|1,B

Y ,F2|2,B
Y ,F3|3,B

Y ,F4|4,B
Y ) − 𝜈(F1|B,B

Y ,F2|B,B
Y ,F3|B,B

Y ,F4|B,B
Y ).

Next, we want to further decompose the total marginal effect (Δ𝜈
M) into portions attributable to specific covariates (and their

interactions).15 With d covariates and four groups, there are several potential counterfactual distributions for each Yg that can be
derived from Equation 6, not all of which are of direct interest for our decomposition. Recall that the aggregate decomposition,
and thus the composition effect, was derived with group B as the baseline group to which each Yg was compared. Therefore,
to decompose the total marginal effect, we need to consider all potential counterfactuals for groups 1, 2, 3, and 4 relative
to group B. That is, we need to evaluate each counterfactual where all four groups take group B's marginal distributions for
some set of covariates but maintain their own marginal distributions for the remaining covariates. This requires additional
notation. Consider a d-dimensional product set {0, 1}d where an element of the product set (denoted with a bold font and a
tilde) represents a mapping for the set of the four elements 𝝎

i with i = {1, 2, 3, 4}. Let �̃� be a generic element of this set
and define this mapping such that 𝝎i

l = B if �̃�l = 1 and 𝝎
i
l = i if �̃�l = 0. For example, if �̃� = (1, 1, 0, 0, … , 0), then

𝝎
1 = (B,B, 1, 1, … , 1),𝝎2 = (B,B, 2, 2, … , 2), etc. In addition, let ẽl be the lth unit vector such that all entries equal 0 except

the lth, which equals 1. Then, given a feature 𝜈 of interest, we can denote

𝛽𝜈(�̃�) = 𝜈(F1
Y ,F

2
Y ,F

3
Y ,F

4
Y ) − 𝜈

(
F1|1,𝝎1

Y ,F2|2,𝝎2

Y ,F3|3,𝝎3

Y ,F4|4,𝝎4

Y

)
.

This should be interpreted as the effect of a counterfactual alteration where, for elements of �̃� with �̃�l = 1, the mapped
marginal distributions of groups 1, 2, 3, and 4 are altered to the marginal distributions of group B while holding all else constant
(including the copula). For example, if �̃� = (1, 1, 0, 0, … , 0), then 𝛽v(�̃�) represents the effect on our transition matrix of
changing the marginal distributions of the first two variables for all groups to those of group B while holding all else constant.

Now, letting |�̃�| = ∑d
l=1 �̃�l, define

Δv
M(�̃�) = 𝛽v(�̃�) +

∑
1⩽|�̃�′|⩽|�̃�|−1

(−1)|�̃�|−|�̃�′|𝛽v(�̃�′).

Thus Δv
M(ẽ

l) = 𝛽v(ẽl). Also, note that if |�̃�| = 2 then Δv
M(�̃�) is equal to the effect 𝛽v(�̃�) with the individual “parts” of the

effect from 𝛽v(�̃�′) where |�̃�′| = 1 removed. Thus the “full” counterfactual of changing, for instance, the distribution of the first
two covariates to that of group B for all groups 1, 2, 3, and 4 is split into two “direct effects” [𝛽v(ẽl) = Δv

M(ẽ
l), where |ẽl| = 1

and l = 1, 2] and one “interaction effect” [Δv
M(�̃�), where |�̃�| = 2, �̃� = (1, 1, 0, … , 0)].

Therefore, the detailed decomposition (of the composition effect) contains three parts: (1) “direct contributions” from each
covariate due to differences between groups in the marginal distribution of these variables [Δv

M(ẽ
l)]; (2) several “interaction

effects,” which are due to interactions between the marginals (Δv
M(�̃�) where |�̃�| > 1); and (3) a “dependence effect” due to

different dependence structures among the covariates between the groups (Δv
D). Thus we have

Δv
X =

d∑
l=1

Δv
M(ẽ

l) +
∑
|�̃�|>1

Δv
M(�̃�) + Δv

D, (7)

where the interaction effects are summed over all possible interactions.

14Note that the term 𝜈(F1|B,B
Y ,F2|B,B

Y ,F3|B,B
Y ,F4|B,B

Y ) is identical to the counterfactual term in the aggregate decomposition, that is, 𝜈(F1|B
Y ,F2|B

Y ,F3|B
Y ,F4|B

Y ).
15Rather than taking this approach, one could choose to deviate at this point and take an approach more in line with that of Shorrocks (2013) and simply average
over all possible paths of equating the marginal to obtain only “direct” marginal effects in the spirit of the Shapely value (see footnote 11).
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The direct effects are perhaps the simplest to understand: They are the portion of the overall gap that would be closed if we
equalized the distribution of some specific variable across children from different households, for example, eliminated education
differences along parental incomes. The interaction terms come about because we are dealing with nonlinear functions: The
effect of changing two sets of characteristics will invariably have a different effect from the simple sum of the two direct
effects; the interaction effects account for this discrepancy. The intuition behind the dependence structure is a bit more nuanced.
Not only do children from different households have different distributions of individual characteristics, but the characteristics
potentially covary together differently. Imagine a simple scenario with two groups (1 and 2) and two characteristics (A and B)
both distributed uniform [−1, 1] for both groups. Furthermore, assume both groups have the same structural model defining an
outcome of interest: Y = A + B. Both covariate distributions are identical, as is the structure effect. But what if for group 1 the
relationship between A and B (the dependence structure) were A = B, while for group 2 it were A = −B? Despite being identical
in all other regards, the two groups have drastically different dependence structures and yield vastly different outcomes for the
distribution of Y. The dependence effect captures this aspect of the mobility gap.

2.4 Choice of counterfactual
The counterfactuals considered above were defined by a baseline group that must be explicitly chosen. That is, we must choose
an appropriate FB

X to generate the various counterfactual distributions. The choice of FB
X has no effect on the independent

matrix values; for our application, the independent matrix is a 4 × 4 matrix with all entries 0.25 regardless of the baseline
distribution chosen. However, the choice of FB

X will affect the counterfactual transition matrices that determine our decompo-
sition components. The baseline group defines the distribution of covariates that will be assigned to all children (regardless of
parental quartile) in the counterfactual distributions. Therefore, the resulting counterfactual transition matrices will represent
a world in which all children have the covariate distribution of the baseline group for the covariates of interest in that partic-
ular counterfactual but maintain their own distributional aspects for the remaining covariates, as well as their own returns to
these characteristics. In the traditional decomposition setting, the counterfactual is simply the distribution of characteristics
of one of the groups in question (e.g., distribution of men's characteristics in a comparison of men's and women's incomes),
and the interpretation of results varies based on the selected baseline group. We follow a similar practice here. With multiple
choices for the baseline group, we base our choice on what we believe to be relevant policy possibilities, particularly a policy
of increased investment. The aim of such policies may be to increase investment in children from lower-income households to
align their characteristics with children from the highest-income households. The baseline distribution required to analyze such
a policy would therefore be the distribution of children from the top quartile households. This counterfactual is essentially ask-
ing: “What if all children had characteristics like those at the top?” We follow this approach in our application and therefore
set FB

X = F4
X . While we believe this is a valid counterfactual with potential policy implications and relevance, one could easily

explore alternative baseline distributions. For example, one could use the unconditional distribution of all children as the base-
line; this counterfactual would ask: “What if all children had the average characteristics of the population?” and be more more
reflective of a redistribution policy.

2.5 Estimation
The decomposition effects are estimated by simulating the relevant counterfactual distributions. Thus, as a first step, we must
estimate each component used in the construction of these counterfactuals. These include the marginal distributions of the
covariates for each group, the conditional CDF of Y|X for each group, and the copula function for each group. Once these
components are estimated, any counterfactual outcome can be numerically approximated using the estimated components for
population components (Equation 6).

Marginal distributions are simply estimated with the empirical CDF. Most statistical software packages have built-in functions
that can easily perform this; for example, the “ecdf” function in R estimates the CDF, and the “quantile” function estimates the
‘inverse’ CDF. This amounts to estimating Pr(x ⩽ c) with the empirical counterpart; that is, 1

n

∑n
i=1 I(xi ⩽ c), where I(·) is the

indicator function.
The conditional CDFs are estimated using the distributional regression approach suggested by Foresi and Peracchi (1995); this

is based on estimating multiple standard probit models where we vary the cut-off across a grid along the outcome space.16 Specif-
ically, we repeatedly estimate Pr(yi ⩽ ỹ|x) = Φ(x𝛽ỹ) for ỹ ∈  , where X is a vector of covariates (e.g., education, experience,

16Koenker and Bassett (1978) propose an alternative approach based on quantile regression. We refer readers interested in the relationship between the alternative
approaches to Koenker, Leorato, and Peracchi (2013).
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cognitive, and non-cognitive measures) and Y is log income. Thus for any vector X = x we have an approximation to the condi-
tional CDF represented by a grid of estimated probabilities (i.e., Pr(yi ⩽ ỹ|x) for select ỹ). The approximation of the conditional
CDF is completed by interpolating these estimated grid points to create an approximately continuous conditional CDF.

Lastly, the copula is estimated with the Gaussian copula model:

CΣ(u) = Φd
Σ(Φ

−1(u1), … ,Φ−1(ud)). (8)

This model does not impose the joint distribution of X to be Gaussian; rather, it assumes the dependence structure of the
transformed variables ui = Fi(xi) follows the Gaussian model.17 For estimation, we rely on the maximum pseudo-likelihood
approach (Genest, Ghoudi, & Rivest, 1995).18 Specifically, this step estimates the covariance matrix of the multivariate Gaussian
distribution underlying our copula. The resulting estimate is the one that maximizes the likelihood of the “pseudo-data”—data
that have been converted to “rankings” through the empirical CDF of each marginal.19

Our steps to simulate a counterfactual transition matrix are as follows:

1. Estimate the copulas, conditional CDFs and marginal distributions as described above.
2. Simulate N pseudo-observations from a copula of choice, which yields a multivariate distribution of covariate “rankings.”

For our application, we draw N = 50, 000 observations from a Gaussian multivariate distribution (given our choice of
copula and estimate of the covariance structure) and then pass these draws through a standard Gaussian CDF to yield
pseudo-observations or “rankings.”

3. Pass the pseudo-observations through the “inverse” CDF of a set of marginals of choice, providing a distribution of covariates
(X's).

4. Pass the set of X's from step 3 through a conditional CDF of choice to get N conditional CDFs.
5. For each ỹ, take the average Pr(yi ⩽ ỹ) across the N estimated conditional CDFs to get an unconditional CDF.
6. Interpolate the estimated grid probabilities from step 5 to create an approximately continuous distribution.
7. Repeat steps 2–6 for each group underlying the counterfactual transition matrix (e.g., for each group of children from different

parental income quartiles).
8. Cast the set of simulated distributions into a counterfactual transition matrix.

Once the counterfactual transition matrix is constructed, we can use it to assign portions of the mobility gap to specific effects
(i.e., structure, composition, dependence, direct marginal, etc.).

3 DATA

The primary source of data for our analysis is the 1979 National Longitudinal Survey of Youth (NLSY79), including the
restricted-use geocode data.20 The NLSY79 is a panel survey of youths aged 14–22 in 1979. It includes a cross-sectional repre-
sentative survey (n = 6, 111), an oversample of minorities and poor whites (n = 5, 295), and a sample of military respondents
(n = 1, 280).21 We use only the cross-sectional representative survey.

We limit the sample to white males who reported living with a parent for at least two of the first three years of the survey and
with reported parental income for those years.22 A key variable of interest is parental status based on both parents' (average)
household income (identified as full household income minus any income reported by the respondent).23 The outcome of interest

17While the Gaussian copula is fairly flexible and a common choice, it is not the only option. For a robustness check, we also estimate our decomposition
using Student's t copula, which assumes the dependence structure of the transformed variables follows a multivariate t-distribution and allows for greater tail
dependence. We find no substantial differences from our main findings.
18Specifically, we use the R package “copula” and the methods within (Hofert, Kojadinovic, Maechler, & Yan, 2015; Hofert & Maechler, 2011; Kojadinovic &
Yan, 2010a; Yan, 2007). Through simulation, Kojadinovic and Yan (2010b) show that the pseudo-likelihood approach performs favorability over several other
approaches.
19For example, assume a two-dimensional case with a given actual data point of covariates of X = (x1, x2) = (35, 50). This would be converted to pseudo-data
of perhaps X̃ = (x̃1, x̃2) = (0.25, 0.8) if 35 was the 25th percentile of the marginal distribution of x1 and 50 was the 80th percentile of the marginal distribution
of x2. The covariance matrix estimate is maximized over this pseudo-data; in particular, these pseudo-observations are passed through an inverse standard
Gaussian CDF yielding data on a multivariate Gaussian distribution on which the covariance structure is maximized (i.e., Equation 8).
20The use of the NLSY79 geocode data is subject to a special agreement with the Bureau of Labor Statistics (BLS). The views expressed here do not necessarily
reflect the views of the BLS.
21The oversample of military and poor whites was discontinued in 1984 and 1990, respectively
22We exclude individuals who lived with a spouse or child during these years.
23Measurement error in parental income is a common concern in the mobility literature. Although some research indicates that transition matrices are less
susceptible to such errors relative to other mobility measures (Nybom & Stuhler, 2016, the concern is still valid, particularly in the corners of the transition
matrix (Nybom & Stuhler, 2016; O'Neill, Sweetman, & Van De Gaer, 2007).
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TABLE 3 Summary statistics: NLSY79 white males

Parental income quartile
Variable Q1 Q2 Q3 Q4 All

Parental income 12,342 25,190 35,539 58,746 32,974

(4,741) (2,961) (3,674) (15,748) (19,050)

Youth income 19,443 23,672 27,014 35,370 26,381

(15,504) (16,724) (18,418) (24,677) (20,016)

Youth income rank 0.37 0.47 0.53 0.63 0.50

(0.27) (0.28) (0.26) (0.28) (0.29)

Experience 13.4 13.9 14.0 13.9 13.8

(4.0) (3.5) (3.2) (3.3) (3.5)

Education 12.7 13.1 13.9 14.9 13.6

(2.5) (2.3) (2.4) (2.6) (2.6)

AFQT 0.10 0.43 0.59 0.80 0.48

(1.02) (0.87) (0.86) (0.80) (0.93)

Rotter 8.8 8.5 8.4 8.2 8.5

(2.4) (2.2) (2.3) (2.5) (2.4)

Esteem 21.8 22.1 22.7 23.2 22.5

(3.9) (3.8) (4.0) (4.1) (4.0)

Perlin 21.9 22.5 22.7 23.1 22.5

(2.9) (3.1) (3.0) (3.0) (3.0)

Birth year 61.2 61.4 61.3 61.2 61.3

(2.03) (2.01) (2.09) (2.04) (2.05)

Note. Standard deviations in parentheses. Incomes are constant 1982–84 dollars and adjusted for

state-level cost of living indices. AFQT score is a standardized measurement.

is the individual's economic status based on their average reported wage and salary income between 1996 and 1998. All incomes
are deflated to 1982–1984 dollars using the CPI. Further, since regional differences in cost-of-living may lead to imperfect and
potentially biased measures of real income (Fuchs, 2004), we adjust parental and child incomes according to the state-level cost
of living indices discussed by Berry, Fording, and Hanson (2000).24

The sample is further limited to individuals not enrolled in school over the period of interest and with available Armed Forces
Qualifying Test (AFQT) scores. The final sample includes 1,321 individuals born between 1957 and 1964 with a mean age
of 34.7 during our outcome years of interest (1996–1998).25 Table 3 provides summary statistics for the entire sample and by
parental income quartile.

The variables we include in our decomposition are based on an extended Mincer equation. The traditional Mincer equation
includes education, experience, and experience squared (Mincer, 1974). We extend this basic model to include other variables
that have been related to income determination. In particular, we include a measure of cognitive ability (AFQT) and three
measures of non-cognitive ability (Esteem, Rotter, and Perlin).

The NLSY79 does not provide a direct measure of experience. Therefore, we construct a measure of “full-time equivalent”
(FTE) years of experience using the weekly array of hours worked.26 One FTE year of experience is assumed to equal 52
weeks times 40 hours (hours worked are top coded to 40). A few older individuals in our sample completed their education

24This step requires the use of the restricted NLSY79 geocode data, which includes respondents' state of residence. We link respondents' state of residence to
year/state-level costs of living. Specifically, we use the index provided on Richard Fording's website (https://rcfording.wordpress.com/datasets/) and thank him
for providing these publicly.
25The literature on intergenerational mobility has identified the possibility of life-cycle bias depending on age at which incomes are measured (Böhlmark
& Lindquist, 2006; Haider & Solon, 2006; Nybom & Stuhler, 2016). However, this literature seems to indicate that such biases, at least for left-hand-side
measurement error, are minimized or eliminated when youths reach their mid-30s, and this informs our choice of survey years in a trade-off with higher attrition
later in the survey. Furthermore, Nybom and Stuhler (2016) find that transition matrices are much more immune to these biases than alternative measures of
mobility. However, for a robustness check, we reestimate our analysis by rolling forward our sample window. We remeasure incomes between 1998 and 2000,
which gives us an average age of over 37 years. We find minimal differences and no changes in our qualitative results. Regarding right-hand-side bias due to
the age of parents' incomes, we have less control over this due to the nature of the survey. However, our average parental age is 46 years. In a “both-hand-side”
measurement error simulation by Nybom and Stuhler (2016), they fix parental age at 45 and find this adds little bias to “bottom to top” transitions in a transition
matrix. While not definitive, we take these to suggest that life-cycle biases are unlikely to be the main drivers of our main results.
26Our measure of experience is very similar to, but slightly different from, the measure used by Regan and Oaxaca (2009).

https://rcfording.wordpress.com/datasets/
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prior to the beginning of the survey and therefore were already working during the first round of interviews in 1979. Without
information on previous work experience for these individuals, we construct the following “pre-survey” estimate of FTE years
(FTE<79) based on age, years of schooling, and FTE years of experience earned in the initial survey year: FTE<79 = (Age79 −
Years of schooling79 − 6) · FTE79. We then add the pre-survey FTE years to the (observed) survey FTE years.

Educational attainment is measured as years of schooling. The measure of cognitive ability used in our analysis is Armed
Forces Qualifying Test scores (AFQT). Since different individuals took the test at different ages, the measure used is from
an equi-percentile mapping used across age groups to create age-consistent scores (Altonji, Bharadwaj, & Lange, 2012). The
use of AFQT scores as a measure of ability warrants a brief discussion. Some argue AFQT scores are proxies for IQ scores
while others draw serious doubts to this interpretation Ashenfelter and Rouse (2000). Others question what it is exactly that
IQ scores measure, noting large changes in IQ scores over time (Flynn, 2004). Therefore, we simply interpret AFQT scores as
some combination of innate ability and accumulated human capital as a youth that is valued in the labor market. However, for
ease of expression, we will refer to AFQT scores as our measure of “cognitive ability.”

We use three measures for non-cognitive ability. First, we use information from the Rosenberg Self-Esteem Scale
Rosenberg (1965). This scale contains 10 statements on self-approval and disapproval; we use a summary measure of the indi-
vidual's responses to these 10 statements (Esteem). Second, we use a summary measure from the Rotter-Locus of Control Scale
(Rotter), which measures the “extent to which individuals believe they have control over their lives through self-motivation or
self-determination (internal control) as opposed to the extent that the environment (that is, chance, fate, luck) controls their lives
(external control)” (Bureau of Labor Statistics, 2015). Rotter and Esteem were measured in the first two rounds of the survey
(1979 and 1980, respectively). Therefore, the third measure we include is the Perlin Mastery Scale, measured in 1992 when
respondents were in their early 30s. The Perlin Mastery Scale measures the extent to which individuals “perceive themselves in
control of forces that significantly impact their lives” (Bureau of Labor Statistics, 2015).

A brief discussion regarding identification is warranted. That is, what can we actually learn from our empirical application?
The first step of our approach is an aggregate decomposition that attempts to separate the overall mobility gap into composition
and structure effects. In order to correctly identify these effects, we must assume that, conditional on the observable characteris-
tics, any unobserved characteristics affecting wages are identically distributed for all groups (i.e., across parental quartiles).27 If
this assumption does not hold, our structure effect may incorrectly pick up differences in unobserved productivity characteristics.
Given our robust set of cognitive and non-cognitive measurements, we believe this is a tenable assumption in our application.
Thus we feel our aggregate decomposition identifies meaningful structure and composition effects. The second step of our
approach is a detailed decomposition to break down the composition effect into effects from individual characteristics (as well
as interaction and dependence effects). To attach causal interpretations to our detailed decomposition, an additional assumption
must hold: any unobservable characteristics that affect wages are independent of our observed characteristics.28 The endoge-
nous nature of education in explaining incomes is well documented and thus we believe this is likely an untenable assumption in
our setting. Therefore, like much of the mobility and decomposition literature, we interpret the detailed decomposition results
as descriptive in nature and as a first-order approximation to underlying drivers of income persistence.

4 RESULTS

We begin by investigating the decomposition results for our two summary indices M1 and M2 (Table 4). We then take a closer
look at what is driving those results. We do this by first discussing the aggregate decomposition and counterfactual transition
matrix as a whole (Table 1). Then, we present detailed decomposition results for the transition matrix entries for those coming
from households in the top quartile of the earnings distribution (p4j for j = 1, 2, 3, 4) (Table 5) and transition matrix entries for
those coming from households in the bottom quartile of the earnings distribution (p1j for j = 1, 2, 3, 4) (Table 6).29

Within each decomposition (Tables 4 –6), our presentation of results follows our theoretical discussion of the decomposition
method. First, we report the overall difference and its aggregate decomposition into the structure and composition effects.
Second, we report the initial step in the detailed decomposition of the composition effect (i.e, the dependence and total marginal

27This assumption is more generally referred to as “conditional independence” or “ignorability.” See Fortin, Lemieux, and Firpo (2011) for a detailed discussion
of identifying assumptions in decomposition methods.
28This assumption is more generally referred to as “independence.”
29The overall actual–benchmark difference reported in Tables 4 –6 will differ slightly from the differences from Tables 1 and 2 because the decomposition
results are based on simulated data rather than the empirical data (i.e., we simulate our actual empirical transition matrix to construct our decomposition
rather than use the empirical matrix itself; see section 2.5). However, the estimated values are very similar, suggesting that our parametric specification of the
conditional CDF and copula function fit the data reasonably well.
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TABLE 4 Index decompositions

M1 M2

Total difference: Δv
o −27.23*** (2.65) −30.57*** (2.73)

Structure effect: Δv
s −14.15*** (2.86) −14.87*** (2.95)

Composition effect: Δv
x −13.08*** (2.47) −15.70*** (2.66)

Dependence effect: Δv
d 0.83* (0.48) 0.96 (0.93)

Marginal effect: Δv
m −13.92*** (2.45) −16.66*** (2.60)

“Direct” contribution to marginal effect: Δv
m(ej)

AFQT −3.82*** (1.46) −4.68*** (1.46)

Education −5.96** (2.36) −6.19** (2.47)

Experience −1.22* (0.68) −1.26* (0.69)

Esteem −0.25 (0.56) −0.42 (0.58)

Rotter −0.11 (0.50) −0.19 (0.52)

Perlin −0.52 (0.74) −0.60 (0.75)
“Two-way” interactions: Δv

m(k) with |k| = 2

AFQT:Education −1.37 (1.13) −2.23* (1.35)

AFQT:Experience −0.17 (0.51) 0.07 (0.48)

AFQT:Esteem −0.04 (0.35) 0.12 (0.29)

AFQT:Rotter 0.20 (0.27) 0.10 (0.26)

AFQT:Perlin −0.60 (0.68) −0.25 (0.52)

Esteem:Education −0.32 (0.43) −0.27 (0.50)

Esteem:Experience −0.01 (0.17) −0.03 (0.16)

Esteem:Rotter 0.06 (0.10) 0.07 (0.10)

Esteem:Perlin 0.06 (0.23) 0.02 (0.19)

Rotter:Education 0.12 (0.30) 0.12 (0.35)

Rotter:Experience −0.02 (0.13) −0.06 (0.14)

Rotter:Perlin 0.11 (0.18) 0.15 (0.18)

Perlin:Education −0.79 (0.72) −1.08 (0.80)

Perlin:Experience 0.08 (0.41) 0.02 (0.31)

Education:Experience −0.50 (0.63) −0.78 (0.64)

Notes. Standard errors, based on 200 bootstraps, are in parentheses. Asterisks denote statistical sig-

nificance: ***1% level; **5% level; *10% level. All results are multiplied by 100 for readability.

effects). Then, we report the covariate direct contributions to the marginal effect followed by two-way interaction contributions
to the marginal effect; higher-order interaction terms are not reported for economy.

In many traditional decomposition settings, the structure effect is interpreted as a discrimination effect. We believe that
would be an inappropriate label for this setting; instead, a more befitting interpretation would be some form of (loosely termed)
“privilege”; for example, parental connections or parental knowledge/awareness of job market opportunities. In terms of the
latter example, if wealthier parents pass on greater knowledge/awareness of educational and job market opportunities to their
sons, such benefits would appear to the econometrician as higher returns for productive characteristics. Similarly, since job
search is costly, sons of wealthier parents may have the financial flexibility to spend more time searching for a better job match,
and the structure effect may partially reflect differences in match quality.

4.1 Index decompositions
Comparing the aggregate decomposition results for the two indices (M1 and M2), the results appear fairly consistent; the com-
position and structure effect each account for about half of the observed mobility gap. Therefore, differences in characteristics
and differences in returns to those characteristics have equal weight in explaining the total observed gap in the mobility indices.
Moreover, they both identify similar drivers within the detailed decompositions: the composition effect appears to be driven by
the marginal effect, and AFQT and education appear to be the main drivers of the marginal effect. AFQT accounts for around
30% of the marginal effect (15% of the total gap), whereas education accounts for 40–45% of the marginal effect (20% of the
total gap). Experience is also a minor contributor to the marginal effect, explaining about 10% of the marginal effect for both
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TABLE 5 Decomposition of top (parental) quartile

1st Q 2nd Q 3rd Q 4th Q

Total difference: Δv
o −11.98*** (1.72) −4.74** (2.01) 0.13 (2.23) 16.60*** (2.17)

Structure effect: Δv
s −5.99*** (1.86) −2.22 (2.09) −2.05 (2.07) 10.27*** (2.18)

Composition effect: Δv
x −5.99*** (1.66) −2.52 (1.93) 2.18 (1.85) 6.33*** (1.70)

Dependence effect: Δv
d −1.14*** (0.43) 1.33*** (0.45) 1.59*** (0.570) −1.79*** (0.58)

Marginal effect: Δv
m −4.85*** (1.51) −3.85** (1.89) 0.58 (1.87) 8.12*** (1.80)

“Direct" contribution to marginal effect: Δv
m(ej)

AFQT −1.28** (0.54) −0.76 (1.07) 0.44 (1.28) 1.59* (0.95)

Education −2.05** (0.84) −1.78 (1.66) −0.39 (1.81) 4.21*** (1.55)

Experience −0.21 (0.35) −0.03 (0.38) 0.19 (0.38) 0.06 (0.52)

Esteem −0.09 (0.19) 0.01 (0.32) −0.22 (0.37) 0.29 (0.36)

Rotter 0.09 (0.14) −0.03 (0.26) −0.67 (0.41) 0.61* (0.34)

Perlin −0.62* (0.36) −0.27 (0.57) 0.23 (0.53) 0.65 (0.45)
“Two-way" interactions: Δv

m(k) with |k| = 2

AFQT:Education −0.76 (0.84) −0.90 (1.44) 1.57 (1.64) 0.10 (1.13)

AFQT:Experience 0.08 (0.29) 0.02 (0.51) −0.07 (0.56) −0.04 (0.32)

AFQT:Esteem −0.03 (0.172) 0.05 (0.348) 0.27 (0.35) −0.29 (0.23)

AFQT:Rotter 0.00 (0.11) −0.09 (0.25) 0.62 (0.39) −0.54* (0.28)

AFQT:Perlin 0.11 (0.37) 0.32 (0.79) 0.12 (0.74) −0.55* (0.32)

Esteem:Education −0.18 (0.19) −0.22 (0.36) 0.71 (0.49) −0.31 (0.36)

Esteem:Experience −0.00 (0.09) 0.01 (0.17) −0.00 (0.19) 0.00 (0.11)

Esteem:Rotter 0.01 (0.05) −0.02 (0.10) 0.15 (0.15) −0.13 (0.15)

Esteem:Perlin −0.02 (0.13) 0.03 (0.23) 0.14 (0.25) −0.15 (0.13)

Rotter:Education −0.00 (0.13) −0.02 (0.27) 0.10 (0.41) −0.08 (0.32)

Rotter:Experience 0.02 (0.06) −0.05 (0.13) 0.02 (0.18) 0.01 (0.14)

Rotter:Perlin 0.03 (0.10) −0.10 (0.19) 0.33 (0.23) −0.25* (0.15)

Perlin:Education −0.37 (0.42) 0.16 (0.80) −0.11 (0.84) 0.31 (0.52)

Perlin:Experience 0.03 (0.21) −0.06 (0.38) 0.05 (0.34) −0.02 (0.14)

Education:Experience −0.14 (0.32) −0.21 (0.57) 0.01 (0.63) 0.35 (0.41)

Note. Standard errors, based on 200 bootstraps, are in parentheses. Asterisks denote statistical significance: ***1% level; **5% level;

*10% level. All results are multiplied by 100 for readability.

measures (or about 5% of the total observed gap). The AFQT–education interaction stands out for both measures but is only sig-
nificant for M2. The interaction term implies complementary effects between the two measures. Based on the estimated direct
and interaction effects, about 80% of the composition effect (or about 40% of the total gap) would be closed if both AFQT and
education were equalized across households. Overall, while the two summary indices measure mobility differently, they portray
very similar pictures regarding the main drivers of measured immobility in the USA.

Summary measures such as M1 and M2 provide a useful overall assessment of underlying mobility drivers, but do not reveal
potential heterogeneities in where and how certain factors play their driving role. In particular, the decompositions of M1 and
M2 indicate that AFQT and education are the main drivers of the mobility gap. However, these results do not identify how
these effects are distributed across the income distribution. A closer look at the entire empirical and counterfactual transition
matrices, along with decompositions of specific transition matrix entries, can help reveal potential heterogeneities.

4.2 Aggregate counterfactual transition matrix
The third panel in Table 1 presents the estimated counterfactual transition matrix. This is the transition matrix we would observe
if there were no differences in the distribution of characteristics between sons from different households (i.e., if composition
effects were removed). Remaining differences between the counterfactual matrix and the independent matrix represent the role
played by the structure effect (i.e., differences in returns to characteristics). These differences are presented in the bottom two
panels of Table 1.
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TABLE 6 Decomposition of bottom (parental) quartile

1st Q 2nd Q 3rd Q 4th Q

Total difference: Δv
o 16.47*** (2.29) 2.15 (2.12) −5.97*** (1.98) −12.64*** (1.60)

Structure effect: Δv
s 7.70*** (2.75) 0.68 (2.82) −4.86* (2.93) −3.52 (3.07)

Composition effect: Δv
x 8.76*** (2.61) 1.48 (3.12) −1.11 (2.70) −9.13*** (2.50)

Dependence effect: Δv
d 0.46 (0.55) −0.74 (0.58) −1.45* (0.74) 1.73** (0.74)

Marginal effect: Δv
m 8.30*** (2.34) 2.22 (2.97) 0.33 (2.69) −10.85*** (2.50)

“Direct" contribution to marginal effect: Δv
m(ej)

AFQT 3.78** (1.93) −0.04 (1.95) −1.51 (1.64) −2.22 (1.36)

Education 2.45 (2.30) −0.20 (3.09) 1.82 (2.70) −4.07* (2.25)

Experience 1.26 (0.88) −0.22 (0.71) −0.33 (0.59) −0.71* (0.42)

Esteem 0.08 (0.67) 0.76 (0.73) −0.76 (0.67) −0.08 (0.52)

Rotter −0.17 (0.54) −0.13 (0.62) 0.81 (0.66) −0.51 (0.48)

Perlin 0.088 (0.93) −0.25 (1.04) −0.27 (0.96) 0.44 (0.61)
“Two−way" interactions: Δv

m(k) with |k| = 2

AFQT:Education 0.80 (1.63) 1.91 (2.15) −1.19 (1.7) −1.51* (0.85)

AFQT:Experience 0.08 (0.62) 0.24 (0.76) −0.23 (0.61) −0.10 (0.26)

AFQT:Esteem 0.50 (0.42) −0.67 (0.66) 0.10 (0.49) 0.07 (0.22)

AFQT:Rotter −0.12 (0.35) 0.56 (0.53) −0.69 (0.49) 0.25 (0.29)

AFQT:Perlin 0.87 (0.90) 0.11 (1.12) −0.83 (0.90) −0.15 (0.32)

Esteem:Education 0.46 (0.55) −0.59 (0.79) 0.14 (0.62) −0.00 (0.40)

Esteem:Experience 0.06 (0.22) −0.04 (0.34) −0.02 (0.21) 0.00 (0.08)

Esteem:Rotter −0.03 (0.11) 0.05 (0.16) −0.09 (0.15) 0.06 (0.08)

Esteem:Perlin 0.16 (0.29) −0.20 (0.43) −0.00 (0.31) 0.04 (0.10)

Rotter:Education −0.19 (0.41) 0.54 (0.65) −0.20 (0.62) −0.15 (0.47)

Rotter:Experience −0.06 (0.15) 0.15 (0.24) −0.06 (0.19) −0.02 (0.11)

Rotter:Perlin −0.16 (0.23) 0.36 (0.34) −0.28 (0.30) 0.08 (0.14)

Perlin:Education 0.44 (0.99) 0.68 (1.29) 0.11 (0.97) −1.23** (0.59)

Perlin:Experience −0.01 (0.48) −0.17 (0.63) 0.15 (0.46) 0.03 (0.12)

Education:Experience 0.21 (0.65) −0.08 (0.94) 0.53 (0.66) −0.66 (0.51)

Note. Standard errors, based on 200 bootstraps, are in parentheses. Asterisks denote statistical significance: ***1% level; **5%

level; *10% level. All results are multiplied by 100 for readability.

Comparing the bottom three panels in Table 1, we find that removing differences in characteristics shrinks the
empirical–benchmark gap for most (but not all) entries and that the roles of the structure and composition effects vary substan-
tially across entries. For example, consider sons from households in the lowest-income quartile (top row in each panel). The
composition effect explains a majority of the total mobility gap for those ending up in either the lowest quartile or the highest
quartile of their own generation's income distribution (first and last columns); in particular, differences in characteristics explain
over 50% of the over-representation in the lowest quartile and over 70% of the under-representation in the highest quartile. Sim-
ilarly, for sons from households in the highest income quartile (bottom row in each panel), the composition effect also appears
to play the largest role in the tails of the income distribution. However, for sons from middle-income households (quartiles 2 or
3), the total mobility gap is relatively small and driven primarily by the structure effect in most cases.30 Overall, “equalizing”
characteristics appear to have the largest effects in the tails of the income distribution. Therefore, to better understand the role
of the composition effect within the tails of the distribution (i.e., role of specific covariates), we look at detailed decompositions
for sons from households in the top quartile of the parental distribution and sons from households in the bottom quartile of the
parental distribution.

30One exception is what explains the relative absence of sons from the third quartile households (third row) from the bottom quartile of earnings (first column);
this appears to have a relatively strong composition component.
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4.3 Matrix results: Top quartile of the parental distribution
We first focus on the decomposition of sons from households in the top quartile of the parental earnings distribution (p4j for
j = 1, 2, 3, 4) reported in Table 5. In this case, the total difference represents the difference between the entries in the last row of
the “Empirical Matrix” in Table 1 and in the last row of the independent matrix (0.25 for all cells; second panel in Table 1). The
total difference is significant for all but the third quartile; the structure and composition effects are statistically significant for the
first and fourth quartiles but not the second and third quartiles. The composition effect explains around 50% of the mobility gap
for the bottom quartile but only about 38% for the top quartile. These results indicate that differences in characteristics explain
less than half of the large presence of sons from the top households ending up in the top quartile of their earnings distribution,
and explains half of their relative omission from the bottom quartile.

In the detailed decomposition, the dependence effect is statistically significant for all quartiles; this implies that differing
interrelations among productive characteristics between sons from different households are themselves important drivers of
income persistence.31 The total marginal effect is statistically significant for the first, second, and fourth quartiles. Looking at
the direct contributions to the total marginal effect, AFQT has a statistically significant effect at the first and fourth quartiles,
accounting for about 10% of the overall mobility gap in both. Similarly, education plays a statistically significant and large role
in the first and fourth quartiles, accounting for about 16% of the overall gap in the first quartile and 25% of the overall mobility
gap in the fourth quartile. Statistical significance of the non-cognitive measures are somewhat sporadic, with the Perlin measure
playing a role in the first quartile and the Rotter measure in the fourth quartile. Similarly, only a few of the two-way interactions
appear to be statistically significant in driving mobility and only at the fourth quartile.

Analyzing these results we see some important heterogeneity overlooked by the summary indices. While the index results
point to a 50:50 split for the composition–structure effects, the results here show that the main driver varies depending on the
entry of interest. Most notably, the composition effect only accounts for 38% of the overabundance of these sons in the upper
quartile of incomes. This leaves a relatively large role for the structure (privilege) effect; this implies that more than just equating
characteristics is needed to close the gap at the upper income levels. For example, if the structure effect partly reflects differences
in parental knowledge/awareness of job market opportunities, then educating families on career path opportunities may be a
promising mechanism to help close this gap. More heterogeneity emerges in the detailed decomposition, particularly the effect
of education. These results imply that if educational differences were removed, such that everyone had education levels equal
to those coming from the top quartile households, then the estimated mobility gaps would shrink significantly, although not
equally across the transition matrix. That is, the differences in educational outcomes across households explains quite a bit of
the overabundance of wealthier sons in the upper quartile but explains considerably less about their relative absence from the
bottom quartile.

4.4 Matrix results: Bottom quartile of the parental distribution
Next, we consider sons from households in the bottom quartile of the parental earnings distribution (p1j for j = 1, 2, 3, 4) reported
in Table 6. In this case, the total difference represents the difference between the entries in the first row of the “Empirical
Matrix” in Table 1 and in the first row of the independent matrix (0.25 for all cells; second panel in Table 1). The composition
effect is estimated at 53% for the bottom quartile and 72% for the top quartile.32 Therefore, differences in characteristics explain
53% of the overabundance of sons from bottom-quartile homes that end up in the bottom quartile of their generation's earnings
distribution, and it explains 72% of their relative absence in the upper quartile.

In the detailed composition, the marginal effect appears to drive the composition effect in both the first and fourth quartiles.
The dependence effect again plays a role, but is only statistically significant in the upper half of the distribution.33 Looking
at the direct contributions to the marginal effect, only three effects are statistically significant. The effect of AFQT at the first

31The dependence effect illustrates that sons are pushed out of the second and third quartiles (the center) and into the first and fourth (the tails). This is driven
primarily by the education-experience correlation copula parameter. This parameter is highly negative for sons from the wealthiest homes and steadily shrinks in
magnitude across lower-income households to essentially zero for sons from the poorest households (these results are not reported but are available by request).
From the summary statistics in Table 3, we see this is partly due to the large amount of “free” time for sons from poorer households (i.e., the summation of
experience and education is lower). The dependence effect is what would result if we s et all sons' copula parameters to those from the wealthiest homes. This
would have the effect of imposing the (larger) negative correlation between education and experiences for all sons, and therefore shrink the tails of the income
distribution for the sons from the bottom three quartiles of households (i.e., those with high education would then have lower experience and those with low
education would then get more experience). Thus, if the bottom three groups of sons are, relatively, pulled out of the tails of the distribution, then sons from
the top would be pushed in.
32Aggregate decomposition components are not statistically significant for the second and third quartiles although the point estimates put about 80% of the gap
at the third quartile on the structure effect.
33These results mirror those from the wealthiest homes. See footnote 31 for an explanation of these results.
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quartile is significant and quite large, accounting for 23% of the overall mobility gap for that quartile. The other statistically
significant effects are in the fourth quartile, where education explains about 33% of the overall gap and experience plays a small
explanatory role (6%). Further, the AFQT–education and education–Perlin two-way interaction terms play a fairly large and
significant role in the fourth quartile.

The decomposition of specific portions of the transition matrix again reveals heterogeneity in effects that are masked by
looking at the decomposition of the summary indices. While the composition effect explains nearly three-quarters of the relative
absence of these sons from the top earning quartile, it only explains half of their overabundance in the bottom. This implies that
quite a different strategy is needed to “unstick” these sons from the lowest-income levels—again, perhaps equalizing information
on potential career opportunities. In the detailed decomposition, we again see important heterogeneity across the tails of the
matrix. While education is a strong driver in explaining why sons from the poorest households do not end up in the upper
quartile of earners, it does a substantially weaker job at explaining why they seem to be stuck in the bottom quartile (33% of the
gap vs. a statistically insignificant 15%). Thus equalizing the educational outcomes across households would appear to help the
highest-achieving sons from the poorest homes; it would not do nearly as much in helping the lowest-achieving sons from these
households. On the other hand, equalizing AFQT across households (which could be interpreted as reducing the quality gap
in primary and secondary schooling) would have a substantial effect in helping the lowest-achieving sons from these homes.
Notably, this latter finding is overlooked in the summary indices which simply points to AFQT as a lesser driver than education;
in reality, their importance plays out in different parts of the distribution.

5 CONCLUSION

Social scientists have long been interested in intergenerational mobility. Over the past few decades, great gains have been made
in estimating mobility, both in mean effects (e.g., intergenerational elasticity of income) and through alternative measurements
that provide a more complete picture of mobility (e.g., transition matrices). As a result, interest has started to turn from estimating
more accurate point estimates to developing a better understanding of the forces that drive income persistence. While much
work has been done to understand the driving mechanisms of mean effects, the lack of an appropriate framework has limited
similar work on transition matrices and related indices. In this paper, we use recent advances in the decomposition literature to
fill this gap.

We introduced a method to decompose transition matrices and related indices. Given a benchmark matrix of interest, the
method decomposes the difference between the empirical matrix and benchmark matrix into portions attributable to differing
characteristics between children from different economically advantaged households (a composition effect) and differing returns
to these characteristics (a structure effect). Our approach also includes a detailed decomposition of the composition effect
based on copula theory. While the method we presented is not a decomposition in the traditional sense, it draws directly on
the decomposition literature; the procedure entails simulating several simultaneous counterfactuals, which are then recast into
counterfactual transition matrices and from which we can identify decomposition effects.

To examine drivers of economic persistence in the USA, we apply our method to the intergenerational mobility of white males
surveyed by the 1979 NLSY. We base our decomposition on an extended Mincer equation that includes education, experience,
cognitive, and non-cognitive measures. We apply our method to two summary indices and to specific transition matrix entries.
We find that the relative importance of the structure versus composition effects varies substantially across the measures of
interest; these findings highlight the importance of being able to understand the driving forces of mobility beyond mean effects.
Further, we found that the summary measures mask important heterogeneity in the roles of specific characteristics. In particular,
both summary indices identified education and AFQT as the main drivers of the composition effect; about 40% of the total gap
observed in the mobility indices would be closed if both AFQT and education were equalized across households. However,
detailed decompositions of specific matrix entries revealed significant heterogeneity in the effects across the income distribution.
For example, while education is a strong driver in explaining why sons from the poorest households do not end up in the upper
quartile of earners, it does a substantially weaker job at explaining why they seem to be stuck in the bottom quartile. On the other
hand, AFQT has a larger effect at pulling them out of the lowest quartile than it does in helping them break into the top quartile.
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