Econometrics Exercise: Omitted Variable Bias

Lets take a closer look at the OVB.

Specifically say that wages are determined by: $log(Wage) = \beta_0 + \beta_1 E duc + \beta_2 IQ + u$ (So that E(u|Educ, IQ) = 0)

But suppose we don't have data on IQ and so instead run the regression: $log(Wage) = \alpha_0 + \alpha_1 E duc + v$

Note now that: $v = \beta_2 IQ + u$

We saw the OVB formula of: $\hat{\alpha}_1 \rightarrow \beta_1 + \rho_{x_1v} \frac{\sigma_v}{\sigma_{X_1}}$

Let δ_1 be the coefficient on *Educ* from a regression of *IQ* on *Educ*: $IQ = \delta_0 + \delta_1 Educ + \epsilon$

TURN IN

Show the OVB formula implies: $\hat{\alpha}_1 \rightarrow \beta_1 + \beta_2 \delta_1$

Hint:

- 1. Rewrite the correlation in the second part of the OVB formula in terms of covariance/variances
- 2. Cancel terms
- 3. Rewrite the $cov(X_1, v)$ in terms of IQ and u

(recall that $cov(Y, aX + bZ) = a \cdot cov(Y, X) + b \cdot cov(Y, Z)$)

- 4. Split up the terms
- 5. Note one term is the definition of the simple regression of IQ on Educ
- 6. Note the other term is zero because E(u|Educ) = 0 implying zero correlation

Now show this works with data:

- 1. Load the data set 'wages.csv'.
- 2. Regress IQ on Educ to get $\hat{\delta}_1$ from $IQ = \delta_0 + \delta_1 Educ + \epsilon$
- 3. Regress log wages on to education to get $\hat{\alpha}_1$ from $log(Wage) = \alpha_0 + \alpha_1 E duc + v$
- 4. Run multiple regression: $log(Wage) = \beta_0 + \beta_1 E duc + \beta_2 IQ + u$
- 5. Verify that $\hat{\alpha}_1 = \hat{\beta}_1 + \hat{\beta}_2 \hat{\delta}_1$

Copy your code and outputs from R and save in a word file.