
Econometrics
Chapter 6: Linear Regression with Multiple Regressors

Does the OLS assumption #1 hold? Or do we have Omitted Variable Bias?

Omitted Variable Bias

Lets look at the class size and test score example again.

We found that smaller class sizes were related to increased test scores.

Is this a causal effect? Maybe there is a problem.

1. In California (where the data came from) there are large immigrant populations and for these
children English is not their native language.
2. And most of these types of children live in poorer districts.
3. And because of the way schools get tax funding from property tax, poorer districts tend to have
larger classes.

→ So the students in the larger classes are also more likely to not speak English as their native
language which likely effects their test scores.

This is a problem if we care about causation.

Def: if our regressor is (1) correlated with a variable that is omitted from the regression (and so in
the error term) and (2) this variable partly determines the outcome, then we say we have omitted
variable bias.

This breaks our first assumption: E[ui|Xi] = 0

A Note on Timing : The concern is with variables that meet the above, and occur before our X of
interest. Sometimes this is not exactly clear and this is where one needs to think about what is the
causal mechanism.

The OLS in this case has the limit of:

β̂1 → β1 + ρxu
σu
σX

1. the bias does not go away even in large samples, and:
2. the size depends on how strongly X and u are correlated (ρ) and
3. the direction of the bias depends on the way they are related.

How do we fix this?

First lets look at breaking up the data according to how many non-native English speakers a group
of schools have.
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Small Class Large Class Difference in Scores
Ave. Score n Ave. Score n Difference t-stat (of diff)

All districts 657.4 238 650.0 182 7.4 4.04
% Non-native speakers
< 2% 664.5 76 665.4 27 -0.9 -0.30
1.9-8.8% 665.2 64 661.8 44 3.3 1.13
8.8-23% 654.9 54 649.7 50 5.2 1.72
> 23% 636.7 44 634.8 61 1.9 0.68

So if we look at our basic (dummy) regression of ‘small class’ on test scores there is a pretty big
effect (7.40).

But when we break it up, not only are all the effects much smaller but look not really significant.
What happened?

Look at the composition of large/small classes with districts with less non-native speakers.

Less non-native speakers also have more small classes. And it is these classes that have the highest
test scores.

So we can see that what we want to do is somehow ‘control’ for number of non-native speakers.
We do this with a multiple regression model.

2nd Note on Timing : The structure of districts is what led to the class sizes, and the percent of
English speakers is part of that structure. So in this sense omitting this variable is a problem.

But look at the opposite case: Should we control for the amount of time teachers spend with each
student? Certainly time spent with student is correlated with class size and it is surely a deter-
minant of test scores. But time-with-student happens after class size is determined, so it is one
channel through with a class size affects test scores - we do not want to control for this. We want
this included. Its a matter of the question you are asking.

Multiple Regression Model

This allows us to look at how some X1 affects Y while holding other X’s constant (for example %
of non-native english speakers).

Say only have two X’s, then our relationship can be modeled as:

Y = β0 + β1x1 + β2x1

This is our population model: the relationship between Y and the X’s that holds on average in the
population

β0 is our intercept and other β’s are our slope coefficients, or simply our coefficients on our X’s.

Now our interpretation of β1 is how changing X1 changes Y holding X2 constant.
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Of course this relationship will not hold exactly for every person, so we add an error term:

Yi = β0 + β1X1i + β2X2i + ui

Of course this is easily extended to any number of X’s. So, how do we estimate these β’s? - OLS.

The only thing that really changes (other than some refinement to our OLS assumptions) is the
meaning of β1.

Now, instead of β1 = ∆Y
∆X1

its just = ∆Y
∆X1

holding all other Xs constant.

So you can think of it as a ‘partial’ effect.

OLS Estimator in Multiple Regression

Pick the b0, b1, b2......bk to estimate the β0, β1, β2.....βk by minimizing the sum of the square errors
of the predicted Y from the actual Y:

minb0,b1...bk
∑

(Yi − b0 − b1X1i − b2X2i− ......− bkXki)
2

Mathematical Details omitted

Test Score Example

Old βSTR = −2.28
New βSTR = −1.1 ; βPctEL = −0.65

The new βSTR is smaller now because this reflects the effect when we hold % of non-native speakers
constant.

The old effect really was picking up the effect of class size and % of non-native speakers

Measures of Fit in Multiple Regression

Standard Error of Regression (SER)

Estimate of the standard deviation of the error term (u), measure of spread of Y around the re-
gression line.

SER = sû; s2
û = 1

n−k−1

∑
û2
i = SSR

n−k−1

The difference between this one and the one for single regressor is the divisor is (n-k-1) instead of
(n-2), this is because here we have degree of freedom correction for the estimated (k) slope plus 1
intercept coefficients.

The R2
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As before, the R2 is the fraction of the sample variance of Y explained by the regression, or 1 minus
the fraction of the variance of Y not explained by the regression.

R2 = ESS
TSS = 1− SSR

TSS

ESS =
∑

(Ŷi − Y )2

TSS =
∑

(Yi − Y )2

SSR =
∑

(ui)
2

But note that adding more regressors always increases your R2.

Remember OLS minimizes sum of square errors, so adding another regressor either doesn’t change
it or must reduce it (because could have just made the coefficient on the new one zero and been
just as good).

So we want to ‘correct’ our R2 to sort penalize simply throwing in nonsense regressors.

Adjusted R2

R
2

= 1− n−1
n−k−1

SSR
TSS = 1− s2û

s2Y

Note the correction by the fraction n−1
n−k−1 which is always greater than 1 (and is embedded in s2

û)

so the adjusted is always smaller than the unadjusted R2

An interesting thing to note is that adjusted R2 can be negative.

In many cases being too concerned about these measures of fit can be a trap. Don’t just look at
R2 and think because it went up by adding a variable that the new model is better than the first.

OLS Assumptions in Multiple Regression

First three just extensions of original three, only the fourth is really new

#1. E(ui|X1i, X2i, ....Xki) = 0. This is the key assumption that makes OLS estimators unbiased.

#2. (X1i, X2i, ..., Xki, Yi), i = 1, 2, ..., n are i.i.d.

#3. Large Outliers are unlikely.

#4. No Perfect Multicollinearity. The case where one regressor is a perfect linear function of
another (or set of). If there is then the OLS estimators cannot be computed - its like dividing by
zero in matrix setting.

Distribution of OLS Estimators in Multiple Regression

If our assumptions hold then:
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1. The estimators are unbiased and constistent
2. In large samples the sampling distribution is well approximated by a normal distribution.
-So all the β̂s are jointly normal and each is also distributed normally.

Muliticollinearity

Dummy variable trap: Suppose you want to control for region with ‘dummies’.

Say having three groups: North, central, and south. And you create a 0,1 variable for each:
N = {0, 1}, C = {0, 1}, S = {0, 1}

If you include all three you will have perfect multicollinearity: N + C + S = 1 = intercept.

So what you need to do is leave one out (your ‘base’ group), and interpret the coefficients on the
others as the difference between that group and the one left out.

Other ways to get perfect multicollinearity are simply making mistakes.

For example: Are any of your variables functions of each other?
Do you have a dummy variable for being male but all of your data is on males?

Imperfect Multicollinearity

This arises when two regressors are highly correlated.

The result is that the estimates of these coefficients will have high variances - they will not be
precisely estimated (though still unbiased).

5


