
Econometrics
Chapter 4: Linear Regression with One Regressor

Basic Model

Lets look at the relationship between class size (measured as student teacher ratio) and student
test scores.

What are we interested in is important. There are two possibilities:

Model 1 : The statistical model - Model 2 : The structural model

What we want to know is ∆TestScore
∆ClassSize - but what do we mean by this?

Model 1: What is the relationship in the world - what is observed - a property of the joint distri-
bution function (used for prediction)

Model 2: What is the causal effect of class size on test scores - what would happen if we intervened
in class size holding all else constant (ceteris paribus)? This is not necessarily in the data/joint
distribution function. (used for policy)

Keep this distinction in mind, but for now lets talk about how we will answer either question. Then
we will discuss under what assumptions will we get the answer we want.

Lets assume a linear model:

TestScore = β0 + βClassSize × ClassSize

Now this cannot be exactly right for every students’ test score.

But we could say this relationship holds on average - so it is modeling how the average test score
changes as class size changes (again it will become important what we mean by ‘as class size
changes’)

How about we add up all the other things that affect test score for each student and use a more
common notation:

Yi = β0 + β1Xi + ui for i = 1, 2, 3...n

These are linear models with a single regressor - note without the ui it is the equation of a line

Y is the dependent variable (explained)
X is the independent variable (explanatory)

the first part: Yi = β0 +β1Xi is the population model/function. It is the part that holds on average
for the population.
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β0 is the intercept
β1 is the slope, or more generally, the parameter of interest

ui is the disturbance/error term.

Think about ui catching all other things that effect test scores when the values of X are fixed :
family background, age, race, sex, teacher quality etc.

Of course β is not known, so we must use some data to estimate them.

So how might we go about ‘estimating’ what is a ‘good’ value of or β?

First lets look at the mechanics of estimation that we will use, and then discuss if this approach
(or under what assumptions will this approach) give us the answer we have in mind.

Estimation

Figure 1: ’Best Fit’ Line

Main idea: How would we fit a ‘best’ line through the dots?

Thats what we want to do right - fit a line that sort of ‘catches’ the overall trend in the scatterplot.

But, how to pick what is the ‘best’ line? Well the standard is the ‘least square error’ line.

Ordinary Least Squares (OLS) Estimator

We choose the line that is ‘closest’ to the data in the sense of the least sum of the square errors in
predicting Y given X
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Recall the sample average Y was the least squares estimator of the population mean (section 3.1
Eq. 3.2), well the OLS estimator extends this notion.

Let b0 and b1 be some estimators of β0 and β1, we want a pair that minimizes:∑n
i=1(Yi − b0 − b1Xi)

2

Whichever b’s that do this are called the Ordinary Least Squares (OLS) estimators.

We usually denote the OLS estimate of with a ‘hat’ β̂.

The predicted Yi given the OLS estimates and Xi is Ŷi.

The residual (different than error term) is ûi = Yi − Ŷi.

So what is the OLS estimator?

β̂1 =
∑n

i=1(Xi−X)(Yi−Y )∑n
i=1(Xi−X)2

= sXY

s2X
= (sample cov(X,Y))/(sample var(X))

Also β̂1 = Corr(Y,X)
sy
sx

so though the sample correlation is unit free, β1 has units of Y/X

β̂0 = Y − β̂1X

Derivation not important (in appendix 4.2)

Say get results of:

ˆTestScore = 698.9− 2.28× STR

So our model says ‘a decrease’ of the student-teacher ratio by 2 will lead to increase expected
(average) test score of 4.56 points. What do we mean by ‘a decrease’? This again depends on our
interpretation of the model.

What about decreasing or increasing by large amounts? Be careful when trying to use results to
predict very large changes - ones outside of the sample area.

Why Should We Use this OLS Estimator?

The OLS estimator has ‘good’ properties. If certain assumptions hold then the OLS estimator is
unbiased and consistent. And under some additional assumptions (put off till later) it is also the
most efficient among a certain class of estimators.
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Measures of Fit

How well does your regression line describe your data?

There are two measures: R2 and the standard error of the regression (SER)

The R2

The regressions R2 is the fraction of the variance of Y that is described/predicted by your X

Note that we can write our observations of Y as a sum of their predictions (based on the regression)
and the resulting residual:

Yi = Ŷi + ε̂i

So the R2 is the ratio of the sample variance of Ŷ to that of Y

We can write these as:

Explained Sum of Squares (ESS):
∑n

i=1(Ŷi − Y )2

Total Sum of Squares (TSS):
∑n

i=1(Yi − Y )2

(Note the ESS uses Y instead of Ŷ because OLS average of Ŷ is the average of Y - see appendix 4.3)

So R2 = ESS
TSS

Or, since there are only two parts to the actual Y (that explained and that not), can think of R2

in terms of the fraction of the variance of Y not explained by the regression:

Sum of Squared Residuals (SSR):
∑n

i=1 û
2
i

Can be shown (appendix 4.3) that TSS = ESS + SSR. So could also write:

R2 = 1− SSR
TSS

In the simple case with only one X the R2 is also the square of the correlation coefficient between
Y and X.

Lets see:
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R2 =
ESS

TSS
=

∑
(Ŷ − Y )2∑
(Y − Y )2

By def. of ESS and TSS

=

∑
(β̂0 + β̂1X − Y )2∑

(Y − Y )2
By def of Ŷ

=

∑
(Y − β̂1X + β̂1X − Y )2∑

(Y − Y )2
By def. of β̂0

=

∑
(β̂1X − β̂1X)2∑

(Y − Y )2

=
β̂1

2∑
(X −X)2∑

(Y − Y )2

=
(cov(X,Y )

var(X)

)2
·
∑

(X −X)2∑
(Y − Y )2

By def. of β̂1

=
(cov(X,Y )

var(X)

)2
· var(X)

var(Y )

=
cov(X,Y )2

var(X)var(Y )
= corr(X,Y )2

Also note R2 ranges between 0 and 1.

If β̂1 is 0 then so is R squared. This should make sense - X does not explain any of Y because it
does not affect it. (Try it yourself. Start with the definition of R2 - either one - and substitute in
like we did above. The key part will be when you substitute in the definition of β̂0).

One the other hand, if your predicted model happened to hit every observation exactly then your
R2 would be 1.

Standard Error of the Regression - SER

SER (= sû) is a estimator of the standard deviation of the regression error (u). And it is in same
units as Y.

This tells us on average how much off is the regression line in terms of units of Y.

Of course the regression errors are not observed, so we estimate using the OLS residuals.

s2
û = 1

n−2

∑n
i=1 û

2
i = SSR

n−2

Why (n-2) again degrees of freedom correction - beyond our scope to really discuss with justice.
This uses fact that average û is zero (see appendix).

Lets get back to test score example:
The R2 is 0.051 and SER is 18.6.
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So 5.1% of the variance in test scores is predicted by class size. And the standard deviation of the
true Y from the predicted is 18.6

Assumptions of OLS

Start with our regression line: Yi = β0 + β1Xi + ui

Now before we move on we have to decide what we are trying to do. This matters. For example
do you just want to know how education and earnings are related? Or do you want to know how
education causes earnings?

To simplify things for the time being assume that things are linear. That is X and Y are related
in a linear way

#1. The Conditional Distribution of ui Given Xi has a mean of zero. E[ui|Xi] = 0

This is a mathematical way of saying the ‘things’ in u should not be related to the X’s in the sense
that given a value of X the mean of the distribution of these other things is zero.

This is the assumption that depends on what your goal is - ie. what question are you asking. I
come back to this below

Figure 2: Errors centered at zero for all values of X

#2. (Xi, Yi), are i.i.d.: This is automatic if drawn from random simple sample. Identical: if from
same population, Independent: if randomly drawn.

Won’t hold for things like time series, earnings for someone this year is probably not independent
of their earnings last year.

#3. Large Outliers are Unlikely: Technically we mean X and Y have nonzero finite fourth mo-
ments: 0 < E(X4

i ) < ∞, and for Y too. It is used to justify the large sample approximations to
the distributions of the OLS test statistics.
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Graphically can see how large outliers can hurt our OLS est.

What role do these assumption play??

Role 1. Under these assumptions (2 & 3), in large samples, the OLS estimators have sampling
distributions that are normal - thus we can form test statistics/confidence intervals (based on large
sample properties).

Role 2. And (#1) gives guidelines for when OLS gives useful (unbiased) estimates.

For what model do we ‘need’ assumption #1?

Again, recall for now we are assuming the world is linear.

For model #1 (statistical model), we only need to worry about assumptions 2 and 3.

So if we only care about the association between test scores and class size we do not need to worry
about assumption 1. Why? - because it will hold by definition.

We define the model that we are interested in as the ‘average in the population given a value of X’
and the error as the difference between what we observed for individuals and that average.

Note that what we care about in this case is the Conditional Expectation Function (CEF): E(Y |X).

So the model we want is Yi = E(Y |Xi) + ui. And ui = Yi − E(Y |Xi).

So: E(ui|Xi) = E(Yi|Xi)− E[E(Y |Xi)] = 0

And so OLS will give unbiased estimates of β.

It may be worth noting that the CEF is the best predictor of Y given X. And even when the CEF is
not linear OLS gives the best linear predictor of the CEF, and if the CEF is linear (as we assumed
by linearity here) then OLS gives the CEF.

For model #2 (structural model) we do need to worry about assumption #1. And normally what
we care about is a structural model.
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Because we are no longer trying to estimate the CEF (E(Y |X)) but rather a model with some
causal interpretation. Remember the question you are asking (and so model you are trying to
estimate) is an idea, OLS is algebra. The algebra is not guaranteed to give you what you want.

Some people refer to this model as a ‘data generating process’, and some denote it as E(Y |do(X))
because it involves thinking about some possible intervention.

In this case we need to think about whether the things in the error term are systematically related
to our X. In other words, if we look at the real world, do the other things that affect Y (ie. the
error term) shift in mean when we change X?

This is commonly called an ‘exogeneity assumption’. Do we believe this?

The classic case is the effect of education on wages. Are there other things that affect wages that
are maybe related to education levels? What about ability/IQ?

What does it look like if assumption 1 does not hold?

Figure 3: Omitted Variable Bias.

IQ is likely related to education levels and also wages. So if we leave it out OLS does not give
us the ‘causal’ relationship between education and wages - this is the Omitted Variable Bias (OVB).

This latter model is typically what we care about - and the one we will discuss from here on out -
and so we need to worry about assumption #1. And if it holds then OLS will also give us unbiased
estimates of the β we care about.

Sampling Distribution of the OLS Estimators
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REMEMBER: since our estimates (of β0 and β1) are computed using random variables then they
too are random and thus also have a distribution - their sampling distribution.

Under the Assumptions above, the means of the sampling distributions of our β’s are the true
values (that is: they are unbiased estimators):

E(β̂0) = β0

E(β̂1) = β1

Also, if the sample is ‘large’ then the distributions of our β’s are well approximated by a bivariate
normal distribution. This implies that the marginal distributions of β̂0 and β̂1 are also normal.

The large sample normal distribution of β̂1 is N(β1, σ
2
β̂1

) where:

σ2
β̂1

= 1
n
var[(Xi−µX)ui]

[var(Xi)]2

The large sample normal distribution of β̂0 is N(β0, σ
2
β̂0

) where:

σ2
β̂0

= 1
n
var(Hiui)
[E(H2

i )]2
where Hi = 1− [ µX

E(X2
i )

]Xi

This draws on the CLT. This allows us, since we know the sampling distribution, to conduct tests
etc.

And you can see above, as n grows the sampling distribution collapses around the true value - the
estimators are consistent also.

Also note that the larger the variance of X then the lower the variance of β̂1 and the smaller the
variance of ui then the smaller the variance of β̂1. To understand the first note the following picture,
which would you rather have? the full data (larger variance in X) or just the part in the middle
(smaller variance of X).

Brief History of ‘Regression’

The term ‘regression’ comes from a paper by Sir Francis Galton (1886)
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In it he was measuring the relation between parental height and children’s height.
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